Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
\(A=\left|2x-3\right|-0,5\)
ta có \(\left|2x-3\right|\ge0\)với mọi x
nên \(\left|2x-3\right|-0,5\ge-0,5\)(cộng cả hai vế với -0,5)
trường hợp dấu bằng xảy ra khi và chỉ khi
\(\left|2x-3\right|=0\)
=> \(2x-3=0\)
=> \(x=\frac{3}{2}\)
vậy GTNN của A = -0,5 khi vfa chỉ khi x = 3/2
\(C=2\left|x-3\right|-4\)
ta có \(\left|x-3\right|\ge0\)với mọi x
=> \(2\left|x-3\right|\ge0\) (nhân cả hai vế với 2)
=> \(2\left|x-3\right|-4\ge-4\) (cộng cả hai vế với -4)
trường hợp dấu bằng xảy ra khi và chỉ khi
\(\left|x-3\right|=0\)
=> \(x-3=0\)
=> \(x=3\)
vậy GTNN của C = -4 khi và chỉ khi x=3
Do \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow A=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
\(minA=-4\Leftrightarrow x=\dfrac{2}{3}\)
Do ∣∣∣x−23∣∣∣≥0∀x|x−23|≥0∀x
⇒A=∣∣∣x−23∣∣∣−4≥−4⇒A=|x−23|−4≥−4
minA=−4⇔x=23