Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2x^2+8x+1=2\left(x^2+4x+\frac{1}{2}\right)=2\left(x^2+2.2x+4-4+\frac{1}{2}\right)\)
\(=2\left[\left(x+2\right)^2-\frac{7}{2}\right]=2\left(x+2\right)^2-7\ge-7\)
Vậy Min A = -7 khi x + 2 = 0 => x = 2
b/ \(2x^2+3x+1=2\left(x^2+\frac{3}{2}x+\frac{1}{2}\right)=2\left(x^2+2.\frac{3}{4}.x+\frac{9}{16}-\frac{9}{16}+\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{3}{4}\right)^2-\frac{1}{16}\right]=2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Vậy Min B = -1/8 khi x + 3/4 = 0 => x = -3/4
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: Để A>0 thì x-3>0
hay x>3
Đề bài sai rồi bạn ! Mình sửa :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-6}{x+1}\)
c) Để P nhận giá trị nguyên
\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)
\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
Ta loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Sửa đề: Tìm GTNN của \(C=x^2-3x+2017\)
Ta có:
\(C=x^2-3x+2017\)
\(C=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}+2014\)
\(C=\left(x-\frac{3}{2}\right)^2+2014\frac{3}{4}\ge2014\frac{3}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(Min_C=2014\frac{3}{4}\Leftrightarrow x=\frac{3}{2}\)
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
A = ( x-1)(2x-1)(2x2-3x-1) + 2017 = (2x2-3x+1)(2x2-3x-1) + 2017
= ( 2x2-3x)2- 1 + 2017
= ( 2x2-3x)2+ 2016
Mà (2x2-3x)2 >= 0 với mọi x => A = (2x2-3x)2+ 2016 >= 2016
Dấu ' = ' xảy ra <=> ( 2x2-3x)2 = 0 <=> 2x2-3x = 0 <=> x ( 2x-3) = 0
<=>\(\orbr{\begin{cases}x=0\\2x-3=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy : min A = 2016 <=> \(\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)