\(\dfrac{3x^2-8x+6}{x^2-2x+1}\)

B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)

Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)

\((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)

\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)

\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4

Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)

a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=3/2

c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)

=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)

=>C>=-12/7

Dấu '=' xảy ra khi x=1/2

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

17 tháng 3 2018

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

17 tháng 3 2018

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

8 tháng 8 2017

1.

A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)

\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)

Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)

<=> \(\left|x-1\right|+\left|x-3\right|\)

Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:

\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)

đẳng thức xảy ra khi \(1\le x\le3\)

Vậy ................

8 tháng 8 2017

1.

a)

\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)

Đẳng thức xảy ra \(\Leftrightarrow x=2\)

b)

\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)

Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)

c) ĐK: \(x\ne-1\)

\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)

\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)

\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)

Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa