K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

đặt biểu thức trên là A.ta có

Amin khi  và chỉ khi \(3x^2\)min.....vì \(3x^2\)\(\ge1\)v x 

Nên \(3x^2\)min = 1 

\(3x^2-3x=1-3.x=-2x\)  

vậy Amin=-2x

30 tháng 4 2018

3(x^2-x)

=3(x^2-2x1/2+1/4-1/4)

=3(x-1/2)^2-3/4

vậy gtnn là 3/4

8 tháng 12 2019

A = 3x ( x- 2x + 3) - x2 ( 3x - 2 ) + 5 ( x- x ) 

A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x

A = ( 3x- 3x) - ( 6x2 - 2x2 - 5x) + ( 9x - 5x )

A = x

8 tháng 12 2019

Làm tiếp nhé lúc nãy bị lỗi

A = x2 - 4x

Thay x = 5 vào A ta được

A = 52 - 4 . 5 = 5

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

25 tháng 7 2018

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

25 tháng 7 2018

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

30 tháng 10 2020

\(\left(8x^3-7x^2\right)\div x^2=3x+\sqrt{\frac{9}{25}}\)

\(\Leftrightarrow\left(8x^3\div x^2\right)-\left(7x^2\div x^2\right)=3x+\frac{3}{5}\)

\(\Leftrightarrow8x-7=3x+\frac{3}{5}\)

\(\Leftrightarrow8x-3x=\frac{3}{5}+7\)

\(\Leftrightarrow5x=\frac{38}{5}\)

\(\Leftrightarrow x=\frac{38}{25}\)

19 tháng 10 2018

\(5-3x^2+6x=-3x^2+6x+5=-3\left(x^2-2x-5\right)\)

\(=-3\left(x^2-2x+1-6\right)\)

\(=-3\left(x^2-2x+1\right)+18\)

\(=-3\left(x-1\right)^2+18\le18\forall x\)

Dấu = xảy ra khi: \(-3\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy : GTLN là 18 tại x = 1

20 tháng 10 2018

Nguyễn Hoàng Khánh Dương sai rồi nha bạn! Bạn thay x = 1 vào biểu thức xem có ra được giá trị MAX = 18 không???

Gọi biểu thức trên là A.Ta có: \(A=5-3x^2+6x=-3x^2+6x+5\)

\(=-3x^2+6x-3+8\)

\(=-3\left(x^2-2x+1\right)+8\)

\(=-3\left(x-1\right)^2+8\le8\) (do \(-3\left(x-1\right)^2\le0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(A_{max}=8\Leftrightarrow x=1\)

25 tháng 2 2017

Ta có:

7x2+8xy+7y2=0 (*)

=>4x2+8xy+4y2+3x2+3y2=0

=>4(x+y)2+3(x2+y2)=0

=>3(x2+y2)=0-4(x+y)2

=>x2 + y2 =0-4(x+y)2/3

Vậy A lớn nhất khi (x+y)2=0=>x=-y

=>Amax=0/3

25 tháng 2 2017

Thế là \(A_{min}=A_{max}=0\) à

31 tháng 10 2019

Câu 1 : x2+3x+3 = (x2 + 2.\(\frac{3}{2}\).x + \(\frac{9}{4}\)) - \(\frac{9}{4}\)+ 3

= (x2 + 2.\(\frac{3}{2}\).x + \(\frac{9}{4}\)) + \(\frac{3}{4}\)= ( x+ \(\frac{3}{2}\))2 + \(\frac{3}{4}\)

Ta có:( x+ \(\frac{3}{2}\))2 ≥ 0 vs mọi x

<=>( x+ \(\frac{3}{2}\))2 + \(\frac{3}{4}\)\(\frac{3}{4}\)

Dấu '' ='' xãy ra <=> x + \(\frac{3}{2}\)=0

=> x =-\(\frac{3}{2}\)

Vậy vs x =-\(\frac{3}{2}\)thì min A = \(\frac{3}{4}\)

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Bài 2:

Đặt \(A=2x-2xy-2x^2-y^2\)

\(-A=2x^2+y^2+2xy-2x=(x^2+y^2+2xy)+(x^2-2x)\)

\(=(x+y)^2+(x^2-2x+1)-1=(x+y)^2+(x-1)^2-1\)

Ta thấy:

$(x+y)^2\geq 0; (x-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow -A=(x+y)^2+(x-1)^2-1\geq -1$

$\Rightarrow A\leq 1$

Vậy $A_{\max}=1$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x+y=0\\ x-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=-1\end{matrix}\right.\)