Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A >= 0
Dấu "=" xảy ra <=> x=0
Vậy GTNN của A = 1 <=> x=0
b, B >= 1/2
Dấu "=" xảy ra <=> x=0
Vậy GTNN của B = 1/2 <=> x=0
Tk mk nha
Câu a)
Ta có: \(A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0\)
Suy ra \(\sqrt{x}+1\ge1\)
Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)
câu b) Tương tự
Thánh làm biếng chào bn :3
Ta có :
\(\sqrt{x-1}\ge0\)
\(\Rightarrow2+\sqrt{x-1}\ge2\)
\(\Rightarrow Min_A=2\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)
Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}vif0<\frac{1}{n}<1nen1<1+\frac{1}{n}<2\Rightarrow\sqrt[n+1]{1}<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt[n+1]{2}<\sqrt{2}\)
\(\Rightarrow1<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt{2}\approx1,41\) => phần nguên các số có dạng \(\sqrt[n+1]{\frac{n+1}{n}}=1\)
=> vậy a có n số hạng => 1+1+1+...+1=n
Giải:
(1+1/2!)+(1+2/3!)+(1+3/4!)+....+(1+2011/2012!)=2011+(1/2!+2/3!+3/4!+...+2011/2012!)
=2011+(\(\frac{1}{2!}\)+\(\frac{3-1}{3!}\)+\(\frac{4-1}{4!}\)+...+\(\frac{2012-1}{2012!}\))= 2011 +(\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+\(\frac{1}{3!}\)-\(\frac{1}{4!}\)+...+\(\frac{1}{2011!}\)-\(\frac{1}{2012!}\))
= 2011+(1-\(\frac{1}{2012!}\))=2012 - \(\frac{1}{2012!}\)<2012 (đpcm)
\(B=\frac{2\left(\sqrt{x+2}\right)-2016}{3\left(\sqrt{x+2}\right)}=\frac{2}{3}-\frac{2016}{3\sqrt{x+2}}\)
Ta có: \(\sqrt{x+2}\ge2\left(\forall x\right)\)
Dấu '=' xảy ra khi x=0
\(\Rightarrow B\ge\frac{2}{3}-\frac{2016}{6}=\frac{-1006}{3}\)
Min B = \(\frac{-1006}{3}\Leftrightarrow x=0\)
Bài bạn Quỳnh ALice không sai
Nhưng mà rút căn thì + 2 phải để ngoài căn
\(B=\frac{2\left(\sqrt{x}+2\right)-2016}{3\left(\sqrt{x}+2\right)}\)
\(B=\frac{2\left(\sqrt{x}+2\right)}{3\left(\sqrt{x}+2\right)}-\frac{2016}{3\left(\sqrt{x}+2\right)}\)
\(B=\frac{2}{3}-\frac{2016}{3\left(\sqrt{x}+2\right)}\)
B đạt GTNN khi \(\frac{2016}{3\left(\sqrt{x}+2\right)}\) đạt GTLN
\(\Rightarrow3\left(\sqrt{x}+2\right)\) đạt GTNN
\(3\left(\sqrt{x}+2\right)\ge6\forall x\)
Dấu = xảy ra khi và chỉ khi x = 0 ( làm tắt tí )
Vậy Min B = \(\frac{2}{3}-\frac{2016}{6}\)
\(=-\frac{1006}{3}\)