K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

A = x^2 + 5x + 7

A = x^2 + 2.x.5/2 + 25/4 + 3/4

A = (x + 5/2)^2 + 3/4

có (x + 5/2)^2 >

=> A > 3/4

Min A = 3/4 khi : (x + 5/2)^2 = 0 => x = -5/2

2 tháng 10 2019

bn vào đường link này nha:'''https://olm.vn/hoi-dap/detail/108540639826.html'''

5 tháng 2 2016

a) Tìm GTNN của 2x2 + 5x + 7

b) Tìm GTLN của -2x2 + 5x + 7

rất ghét OLM

5 tháng 2 2016

a) 2x2 + 5x + 7 = 2(x2 + 5/2x +  7/2) = 2(x2 + 2.5/4x + 25/16 + 31/6) = 2[(x + 5/4 )2+31/6] = 2(x+5/4)+ 31/3 

Ta có: 2(x + 5/4)2 >=0 

Vậy GTNN là 31/3

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

18 tháng 8 2020

Em đng cần gấp ạ

18 tháng 8 2020

B = 2x2 + 5x + 7

     = 2( x2 + 5/2x + 25/16 ) + 31/8

     = 2( x + 5/4 )2 + 31/8

\(2\left(x+\frac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

Đẳng thức xảy ra <=> x + 5/4 => x = -5/4

=> MinB = 31/8 <=> x = -5/4

C = 6x - x2 - 12 = -( x2 - 6x + 9 ) - 3 = -( x - 3 )2 - 3

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2-3\le-3\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxC = -3 <=> x = 3

D = -3x2 - x + 5 = -3( x2 + 1/3x + 1/36 ) + 61/12 = -3( x + 1/6 )2 + 61/12

\(-3\left(x+\frac{1}{6}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)

Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6

=> MaxD = 61/12 <=> x = -1/6

20 tháng 7 2017

ta có:

A=(x+5) -32

Min A= -32

11 tháng 7 2017

Bài 1:

\(P=2-5x^2-y^2-4xy+2x=3-\left(1-2x+x^2\right)-\left(4x^2+4xy+y^2\right)=3-\left(1-x\right)^2-\left(2x+y\right)^2\)

\(\Rightarrow GTLN=3\Leftrightarrow\hept{\begin{cases}1-x=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)