K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

26 tháng 7 2016

x^2+x+1/4+3/4

=(x+1/2)^2+3/4

=> A min=3/4

Câu  kia tương tự .......

26 tháng 7 2016

\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)

nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)

Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)

\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)

Vì \(2\left(x-1\right)^2\ge0,x\in R\)

nên \(2\left(x-1\right)^2+4\ge4,x\in R\)

Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)

20 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)

\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)

c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)

=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)

Dấu '=' xảy ra khi (x-1)2=1

=>x-1=1 hoặc x-1=-1

=>x=0(loại) hoặc x=2(nhận)

Vậy: \(A_{min}=4\) khi x=2

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

NV
5 tháng 4 2021

Do \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall x\) nên:

\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

\(A_{max}=3\) khi \(x=-1\)

\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)

\(A_{min}=\dfrac{1}{3}\) khi \(x=1\)

5 tháng 4 2021

thầy giải cho em bài bài với:

Tìm GTLN: \(\dfrac{-x^2+x-10}{x^2-2x+1}\); x \(\ne\)1

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

12 tháng 2 2017

ĐK tồn tại A với mọi x

\(A=\frac{x^2-x+1}{x^2+x+1}=\frac{x^2+x+1-2x}{x^2+x+1}=1+\frac{-2x}{x^2+x+1}=1+B\) (*)

Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B

\(B=\frac{-2x}{x^2+x+1}\)

Tìm Max\(2-B=2-\frac{-2x}{x^2+x+1}=\frac{2x^2+2x+2+2x}{x^2+x+1}=\frac{2\left(x^2+2x+1\right)}{x^2+x+1}=\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)

=>\(2-B\ge0\Rightarrow B\le2\Rightarrow A\le2+1=3\)đẳng thức khi Tim Min

\(B+\frac{2}{3}=\frac{-2x}{x^2+x+1}+\frac{2}{3}\Leftrightarrow\frac{-6x+2x^2+2x+2}{3\left(x^2+x+1\right)}=\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{2\left(x-1\right)^2}{3\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\ge0\)

\(B+\frac{2}{3}\ge0\Rightarrow B\ge-\frac{2}{3}\Rightarrow A\ge1-\frac{2}{3}=\frac{1}{3}\) đẳng thức khi x=-1

Kết luận:

GTNN A=1/3 khi x=1

GTLN A=3 khi x=-1

24 tháng 12 2016

Dùng PP Miền giá trị đi bạn:
Gọi k là 1 giá trị ta có: (x² - x +1)/(x² + x +1) = k (1). Ta cần tìm k để PT (1) có nghiệm
Từ (1) ta có: (x² - x +1) = k.(x² + x +1)
<=> (1 - k)x² - (k + 1)x + (1 - k) = 0 (*)
Del ta =(k + 1)² - 4( 1 - k)² = -3k² + 10k - 3
Để (*) có nghiệm thì del ta ≥ 0
<=> -3k² + 10k - 3 ≥ 0
<=> 1/3 ≤ k ≤ 3
Vậy GTNN của A =1/3 khi (*) có nghiệm kép hay x = -b/2a=(k + 1)/2(1 - k) với k = 1/3 khi đó x = 1
(Thực ra dùng PP Miền giá trị ta còn tìm được Max A = 3 khi x = -1)