\(\dfrac{x^2+y^2}{x^2+2xy+y^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

\(2A=\dfrac{2x^2+2y^2}{x^2+2xy+y^2}=1+\dfrac{x^2-2xy+y^2}{\left(x+y\right)^2}=1+\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge1\text{ nên: }A\ge\dfrac{1}{2}\text{ hay: }A_{min}=\dfrac{1}{2}\text{ Dấu }"="\text{ xảy ra khi: }x=y\text{ khác 0}\)

10 tháng 12 2017

ÁP dụng bất đẳng thức AM-GM ta có:

\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra\(\Leftrightarrow x=y=z>0\)

Vậy \(MinP=1\Leftrightarrow x=y=z>0\)

19 tháng 10 2021

a) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b)\(x^2-2xy+y^2-z^2\)

\(=\left(x^2-2xy+y^2\right)-z^2\)

\(=\left(x-y\right)^2-z^2\)

\(=\left(x-y-z\right)\left(x-y+z\right)\)

c)\(5x-5y+ax-ay\)

\(=5\left(x-y\right)+a\left(x-y\right)\)

\(=\left(5+a\right)\left(x-y\right)\)

d)\(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

Bài 2 : 

a) \(x^2-2xy-47^2+y^2\)

\(=x^2-2xy+y^2-47^2\)

\(=\left(x-y\right)^2-47^2\)

\(=\left(x-y-47\right)\left(x-y+47\right)\)

19 tháng 10 2021

Bài 1

a) x2 - xy + x - y

= x.(x - y) + (x - y) 

= (x - y) . (x + 1) 

b) x2 - 2xy + y2 - z2

= (x - y)2 - z2

= (x - y - z) . (x - y + z)

c) 5x - 5y + ax - ay

= 5 . (x - y) + a . (x - y)

= (5 + a ) . (x - y)

d) a3 - a2x - ay + xy 

=

a3−a2x−ay+xya3−a2x−ay+xy

=(a3−a2x)−(ay−xy)=(a3−a2x)−(ay−xy)

=a2(a−x)−y(a−x)=a2(a−x)−y(a−x)

=(a2−y)(a−x)

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

8 tháng 10 2018

a) \(x^2-y^2-x-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

b) \(x^2-y^2+2yz-z^2\)

\(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left(x+y-z\right)\)

9 tháng 8 2020

A = x2 + xy + y2 + 3y + 5

4A = 4x2 + 4xy + 4y2 + 12y + 20

4A = (4x2 + 4xy + y2) + (3y2 + 12y  + 12) + 8

4A = (2x + y)2 + 3(y + 2)2 + 8 \(\ge\)\(\forall\)x;y

=> A \(\ge\)2

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+y=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{-y}{2}\\y=-2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinA = 2 khi x = 1 và y = -2

9 tháng 8 2020

A=x+y/2 VCB

A=x : y* t/2 VCB

A=xP:1/2 VCB

A=XPL:VCB

A=x/y:vcb*t/4

hok tốt

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

29 tháng 9 2019

\(A=\frac{x^2+y^2}{x^2+2xy+y^2}\)

\(2A=\frac{2x^2+2y^2}{\left(x+y\right)^2}\)

\(2A=\frac{x^2+2xy+y^2+x^2-2xy+y^2}{\left(x+y\right)^2}\)

\(2A=1+\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\)

Do \(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge0\forall xy\)

\(\Rightarrow2A=1+\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge1\)

\(\Leftrightarrow A\ge\frac{1}{2}\)

\(\Rightarrow A_{min}=\frac{1}{2}\Leftrightarrow x=y\)

Chúc bạn học tốt !!!