Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
Ta sẽ sử dụng đánh giá \(x^3+\frac{1}{x^3}\ge\frac{1}{\left(1+9^3\right)^2}\left(x+\frac{81}{x}\right)^3\)
Dấu "=" xảy ra <=> x=\(\frac{1}{3}\)
Sử dụng đánh giá trên ta có: \(\hept{\begin{cases}\sqrt[3]{a^3+\frac{1}{a^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+\frac{81}{a}\right)\\\sqrt[3]{b^3+\frac{1}{b^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(b+\frac{81}{b}\right)\\\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(c+\frac{81}{c}\right)\end{cases}}\)
Cộng theo vế ta được \(P=\sqrt[3]{a^3+\frac{1}{a^3}}+\sqrt[3]{b^3+\frac{1}{b^3}}+\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\right)\)
Ta lại có: \(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\ge a+b+c+\frac{729}{a+b+c}=a+b+c+\frac{1}{a+b+c}+\frac{729}{a+b+c}\)
\(\ge2+728=730\)
=> \(P\ge\frac{730}{\sqrt[3]{\left(1+9^3\right)^2}}=\sqrt[3]{730}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Hey Hải Nhật, mk có bảo bạn giải đâu ạ? Lời giải này thì mk biết lâu r, (chép trong tài liệu), nhưng mình hỏi cách tìm bđt phụ kia cơ mà
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Bài 1:
dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)
Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)
\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)
P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
a)Từ \(a+b+c\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*
Khi \(a=b=c\)
b)Áp dụng BĐT AM-GM ta có:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự rồi cộng theo vế :
\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Khi \(a=b=c=1\)
dăt tinh roi tinh
173,44:32 112,56:28 155,9:15
b 372,96:3 857,5:35 431,25:125
Ta có : \(a^3+1=\left(a+1\right)\left(a^2-a+1\right)=\left(a+1\right)\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\left(a+1\right)\)
do đó : \(a^3-\frac{3}{4}a+\frac{1}{4}=\left(a+1\right)\left(a-\frac{1}{2}\right)^2\ge0\)với \(a\ge-1\)
Tương tự : \(b^3-\frac{3}{4}b+\frac{1}{4}\ge0,c^3-\frac{3}{4}c+\frac{1}{4}\ge0\)với \(b,c\ge-1\)
\(a^3+b^3+c^3-\frac{3}{4}\left(a+b+c\right)+\frac{3}{4}\ge0\Rightarrow a^3+b^3+c^3\ge-\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=-1\text{ hoặc }a=\frac{1}{2}\\.....\\a+b+c=0\end{cases}}\)
Vậy GTNN của A là \(\frac{-3}{4}\)\(\Leftrightarrow\) a,b,c có 2 số bằng \(\frac{1}{2}\)và 1 số bằng -1