Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
b: \(=\dfrac{x}{2\left(x-3\right)}+\dfrac{4}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+3x+8}{2\left(x-3\right)\left(x+3\right)}\)
c: \(=\dfrac{\left(x+1\right)^2}{\left(x-1\right)^2}\cdot\dfrac{4\left(x-1\right)^2}{2\left(x+1\right)^2}=\dfrac{4}{2}=2\)
d: \(=\dfrac{2x+1}{x-2}\cdot\dfrac{-\left(x-2\right)}{2x+1}=-1\)
a) \(6\left(1,5-2x\right)=3\left(-15+2x\right)\)
\(\Rightarrow6.1,5-6.2x=3.\left(-15\right)+3.2x\)
\(\Rightarrow9-12x=-45+6x\)
\(\Rightarrow9-12x+45-6x=0\)
\(\Rightarrow54-18x=0\)
\(\Rightarrow18\left(3-x\right)=0\)
Để 18(3 - x) = 0
=> 3 - x = 0
=> x = 3
Vậy nghiệm của phương trình là 3
b) \(3-4x\left(25-2x\right)=8x^2+x-300\)
\(\Rightarrow3-100x+8x^2=8x^2+x-300\)
\(\Rightarrow3-100x+8x^2-8x^2-x+300=0\)
\(\Rightarrow303-101x=0\)
\(\Rightarrow101\left(3-x\right)=0\)
Để 101(3 - x) = 0
=> 3 - x = 0
=> x = 3
Vậy nghiệm của phương trình là 3
c) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1+x-1\right)\left(x+1-x+1\right)}{x^2-1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{2x.2}{x^2-1}-\dfrac{16}{x^2-1}=0\)
\(\Rightarrow\dfrac{4x-16}{x^2-1}=0\)
\(\Rightarrow4x-16=0\)
\(\Rightarrow4\left(x-4\right)=0\)
Để 4(x - 4) = 0
=> x - 4 = 0
=> x = 4
Vậy nghiệm của phương trình là 4
d) \(x^2-x-6=0\)
\(\Rightarrow x^2+2x-3x-6=0\)
\(\Rightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy nghiệm của phương trình là -2;3
@Mysterious Person @Aki Tsuki @Nhã Doanh @Phùng Khánh Linh giúp vs! cần gấp lắm!
1)???
2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A là 2 tại x=2.
3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)
\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)
Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)
Dấu '=' xảy ra khi x=3/2
c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)
=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)
=>C>=-12/7
Dấu '=' xảy ra khi x=1/2
a)
\(2x^2-8x+1=2\left(x^2-4x+4\right)-7\\ 2\left(x-2\right)^2-7\)
vì: \(2\left(x-2\right)^2\ge0\) nên
\(2x^2-8x+1\ge-7\)
dấu "=" xảy ra khi x-2=0 => x=2
vậy GTNN của biểu thức là -7 khi và chỉ khi x=2
b).
\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\\ =2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
đẳng thức xảy ra khi \(x=-\dfrac{1}{2}\)
vậy GTNN của biểu thức là 1/2 tại x=-1/2
c).
\(x\left(x+1\right)+\dfrac{3}{2}=x^2+x+\dfrac{3}{2}=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{5}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)
đẳng thức xảy ra khi x+1/2=0 => x=-1/2
vậy GTNN của biểu thức là 5/4 tại x=-1/2