Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+3y^2-2\)
\(M=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\ge-2\)
A=2x2+5y2 -2xy+2x+2y
<=> A=(x2+2xy+y2)+(2x+2y)+1+(x2-4xy+4y2)-1
<=> A=(x+y)2 +2(x+y)+1 +(x-2y)2 -1
<=> A=(x+y+1)2 +(x-2y)2-1
=> GTNN của A=-1 dấu = xảy ra khi x=\(-\dfrac{2}{3}\) ;y=\(\dfrac{-1}{3}\)
\(A=2x^2+5y^2-2xy+2y+2x\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4xy+4y^2\right)-1\)
\(=\left(x+y+1\right)^2+\left(x-2y\right)^2-1\)
Ta thấy :(x + y +1)2 ≥ 0 ∀ x,y
(x - 2y)2 ≥ 0 ∀ x,y
⇒ (x + y +1)2 +(x - 2y)2 ≥ 0 ∀ x,y
⇔(x + y +1)2 +(x - 2y)2 -1 ≥ -1 ∀ x,y
⇔ A ≥ -1 ∀ x,y
Vậy GTNN của A là -1 \(\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020
A = (4x2 + 8xy + 4y2) + (x2 + 2x + 1) + (y2 - 2y + 1) + 2018
A = 4(x + y)2 + (x + 1)2 + (y - 1)2 + 2018 \(\ge\)2018
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)<=> x = -1 và y = 1
Vậy MinA = 2018 khi x = -1 và y = 1
b) B = x2 + 2y2 + 2xy - 2x - 6y + 2019
B = (x + y)2 - 2(x + y) + 1 +(y2 - 4y + 4) + 2014
B = (x + y - 1)2 + (y - 2)2 + 2014 \(\ge\)2014
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MinB = 2014 khi x = -1 và y = 2
A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020
= ( 4x2 + 8xy + 4y2 ) + ( x2 + 2x + 1 ) + ( y2 - 2y + 1 ) + 2018
= 4( x2 + 2xy + y2 ) + ( x + 1 )2 + ( y - 1 )2 + 2018
= 4( x + y )2 + ( x + 1 )2 + ( y - 1 )2 + 2018 ≥ 2018 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
=> MinA = 2018 <=> x = -1 ; y = 1
B = x2 + 2y2 + 2xy - 2x - 6y + 2019
= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2014
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + ( y - 2 )2 + 2014
= [ ( x + y )2 - 2.( x + y ).1 + 12 ] + ( y - 2 )2 + 2014
= ( x + y - 1 )2 + ( y - 2 )2 + 2014 ≥ 2014 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
=> MinB = 2014 <=> x = -1 ; y = 2
\(A=2x^2+5y^2-2xy+2x+2y\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2.2y.\frac{1}{2}+\frac{1}{4}\right)-1-\frac{1}{4}\)
\(=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\)
Ta thấy: \(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(2y+\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
\(\Rightarrow Min_A=-\frac{5}{4}\).