Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
Vậy MinA= 2017 khi x=1; y=-1
A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy Max A bằng 7 khi x=1; y=-1/2
\(x-4y=5\Rightarrow x=4y+5\)
\(A=\left(4y+5\right)^2+4y^2=20y^2+40y+25\)
\(A=20\left(y+1\right)^2+5\ge5\)
\(A_{min}=5\) khi \(\left(x;y\right)=\left(1;-1\right)\)
\(A=x^2+5y^2-4xy-2x-4y+5=x^2-2x\left(2y+1\right)+\left(2y+1\right)^2+\left(y^2-8y+16\right)-12=\left(x-2y-1\right)^2+\left(y-4\right)^2-12\ge-12\)
\(minA=-12\Leftrightarrow\)\(\left\{{}\begin{matrix}x=9\\y=4\end{matrix}\right.\)
Lời giải:
$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$
$=(3x+y)^2-2(3x+y)+y^2+6y+17$
$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$
$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$
Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$
$\Leftrightarrow y=-3; x=\frac{4}{3}$
$A$ không có max bạn nhé.
\(P=x^2+4y^2-4x+4y+2021\)
\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+2016\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+2016\ge2016\)
\(P_{min}=2016\Leftrightarrow x=2;y=-\dfrac{1}{2}\)