Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
Theo mình nghĩ thì phải là giá trị lớn nhất
A=-(x^2-4x+5)
A=-[(x-2)^2+1]
Mà (x-2)^2+1>=1
Nên A<=-1
B=-(x^2+6x-1)
B=-[(x+3)^2-10]
nên B<=10
C=-(x^2+3x+2)
C=-(x^2+3x+9/4-1/4)
C=-[(x+3/2)^2-1/4]
Nên C<=1/4
D=-(2x^2-3x+1)
D=-2(x^2-3x/2+1/2)
D=-2(x^2-3x/2+9/16-1/16)
D=-2[(x-3/2)^2-1/16]
Nên D<=1/8
Chúc bạn học tốt!
\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)
\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)
\(MinB=-2\Leftrightarrow x=1\)
\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)
\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)
\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)
\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)
\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)
\(M\text{ax}B=33\Leftrightarrow x=-5\)
1.
A=\(4x^2-4x+5\)
A=\(\left(2x\right)^2-4x+1+4\)
A=\(\left(2x-1\right)^2+4\)
vì \(\left(2x-1\right)^2\)≥0 với mọi x
⇒\(\left(2x-1\right)^2+4\)≥4 với mọi x
Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0
⇔2x-1=0
⇔x=\(\dfrac{1}{2}\)
Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)
B=\(3x^2+6x-1\)
B=3(\(\left(x^2+2x\right)\)-1
B=\(3.\left(x^2+2x-1+1\right)-1\)
B=\(3.\left(x+1\right)^2-3-1\)
B=\(3\left(x-1\right)^2-4\)
vì \(3.\left(x-1\right)^2\)≥0 với mọi x
⇒\(3\left(x-1\right)^2-4\)≥-4 với mọi x
dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)
⇔x-1=0
⇔x=1
vậy GTNN của B=-4 khi x=1
b) B= 5x2 -10x+3-2
B = (5x2 - 2.5.1 . 12)-2
B = (5x-1)2-2
ta có :
(5x-1)2 > 0 với mọi x thuộc R
(5x-1)2 -2 < -2
vậy B < -2
dấu = xảy ra <=> x = 1/5
mai tui lm nốt choa
a)
\(A=4x^2-4x-1=4x^2-4x+1-2=\left(2x-1\right)^2-2\)
\(A\ge-2\forall x\in R\)
Dấu "=" xảy ra <=>\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy Amin =-2 tại x=1/2
a) \(A=x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\)
Vậy \(A_{min}=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
a) \(x^2-4x+1=x^2-2.x.2+2^2-3=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0\)
nên \(\left(x-2\right)^2-3\ge-3\)
Vậy \(Min_{x^2-4x+1}=-3\)khi \(x-2=0\Rightarrow x=2\)
b) \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)=3\left(x^2-2.x.1+1-\frac{4}{3}\right)=3\left(x-1\right)^2-4\)
Vì \(\left(x-1\right)^2\ge0\)
nên \(3\left(x-1\right)^2-4\ge-4\)
Vậy \(Min_{3x^2-6x-1}=-4\)khi \(x-1=0\Rightarrow x=1\)
a,\(x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3.\)
Vì \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2-3\ge-3\) Dấu = khi x=3
\(=>Min_A=-3\) khi x=3
b, \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)=3\left(x^2-2x+1-\frac{4}{3}\right)\)
\(=3\left[\left(x-1\right)^2-\frac{4}{3}\right]=3\left(x-1\right)^2-4\)
Vì \(\left(x-1\right)^2\ge0=>3\left(x-1\right)^2\ge0=>3\left(x-1\right)^2-4\ge-4\) khi x=1
\(=>Min_A=4\)khi x=1