Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 1 phân số được xác định thì mẫu số của chúng phải khác 0
BÀI LÀM
ĐKXĐ: \(\left(x-1\right)\left(-2x+8\right)\ne0\)
\(\Leftrightarrow\)\(-2\left(x-1\right)\left(x-4\right)\ne0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-1\ne0\\x-4\ne0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy....
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
a) \(\left|x-1\right|+3x=5\)
\(\Leftrightarrow\left|x-1\right|=5-3x\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=5-3x\\x-1=3x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=2\end{cases}}\)
b) \(\left|5x-3\right|-x=7\)
\(\Leftrightarrow\left|5x-3\right|=7+x\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-x-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-2}{3}\end{cases}}\)
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
d) \(\left|x-1\right|+\left|x-5\right|+\left|2x+5\right|\)
\(=\left|1-x\right|+\left|5-x\right|+\left|2x+5\right|\)
\(\ge\left|1-x+5-x\right|+\left|2x+5\right|\)
\(\ge\left|6-2x+2x+5\right|=11\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(1-x\right)\left(5-x\right)\ge0\\\left(6-2x\right)\left(2x+5\right)\ge0\end{cases}}\Leftrightarrow-\frac{5}{2}\le x\le1\).
e) \(\left|x+2\right|+\left|x-1\right|+\left|x-4\right|+\left|x+5\right|=12\)
\(\Leftrightarrow\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|=12\)
Có \(\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|\ge\left|x+2+1-x\right|+\left|4-x+x+5\right|=3+9=12\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(x+2\right)\left(1-x\right)\ge0\\\left(4-x\right)\left(x+5\right)\ge0\end{cases}}\Leftrightarrow-2\le x\le1\).
f) \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|3x-10\right|\)
\(\ge\left|x-1+x-2\right|+\left|3-x+3x-10\right|\)
\(=\left|2x-3\right|+\left|2x-7\right|\)
\(\ge\left|2x-3+7-2x\right|=4\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(x-2\right)\ge0\\\left(3-x\right)\left(3x-10\right)\ge0\\\left(2x-3\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le\frac{10}{3}\).