Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = |x - 2015| + |x - 2016|
= |x - 2015| + |2016 - x|
\(\ge\)|x - 2015 + 2016 - x| = 1
Dấu "=" xảy ra <=> \(\left(x-2015\right)\left(2016-x\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-2015\ge0\\2016-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\Rightarrow2015\le x\le2016\)
TH2 : \(\hept{\begin{cases}x-2015\le0\\2016-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}}\left(\text{loại}\right)\)
Vậy Min A = 1 <=> \(2015\le x\le2016\)
b) Ta có B = |x - 5| + |x - 7|+ |2x - 18|
= |x - 5| + |x - 7|+ |18 - 2x|
\(\ge\)|x - 5 + x - 7| + |18 - 2x|
= |2x - 12| + |18 - 2x|
\(\ge\)|2x - 12 + 18 - 2x| = 6
Dấu "=" xảy ra <=> \(\left(2x-12\right)\left(18-2x\right)\ge0\)
TH1 : \(\hept{\begin{cases}2x-12\ge0\\18-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge6\\x\le9\end{cases}}\Rightarrow6\le x\le9\)
TH2 : \(\hept{\begin{cases}2x-12\le0\\18-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le6\\x\ge9\end{cases}}\)(loại)
Vậy Min B = 6 <=> \(6\le x\le9\)
bn ơi, mk cũng muốn giúp nhung k tài nào tìm ra GTNN có thể sai đề hoặc mk chưa đủ giỏi để giải, nhưng kt 15p mà cho cỡ này thì thi tuyển nhân tài toan hoc à?
Ta có: \(P=\frac{x^2+2x+2016}{x^2}=\frac{x^2+2x+1}{x^2}+\) \(\frac{2015}{x^2}\)
Vì \(\frac{2015}{x^2}>0\) (vì \(x^2>0\))\(\Rightarrow\) Để P có GTNN \(\Rightarrow\frac{\left(x+1\right)^2}{x^2}\)có GTNN
Mà \(\left(x+1\right)^2\ge0\) và \(x^2\ge0\Rightarrow\frac{\left(x+1\right)^2}{x^2}\ge0\)
Dấu ' = ' xảy ra khi \(\frac{\left(x+1\right)^2}{x^2}=0\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\) \(\Rightarrow x=-1\)
=> P có GTNN là \(\frac{2015}{\left(-1\right)^2}=2015\) khi x = -1
Vậy GTNN của P là 2015 khi x = -1
Sửa đề:
\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)
\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow11x+2017=0\)
\(\Rightarrow x=\frac{-2017}{11}\)
Ta có : C = |x-2016|+|x-2015| = |2016-x|+|x-2015|
Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(a;b\(\in Z\))
Ta có : C = |2016-x|+|x-2015| \(\ge\left|2016-x+x-2015\right|=\left|2016-2015\right|=1\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x\le2016\\x\ge2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2016\\2015\end{cases}}\)
Vậy với \(x=\hept{\begin{cases}2016\\2015\end{cases}}\) thì C đạt Min là 1
\(a.\dfrac{2x-1}{x-1}+\dfrac{x}{x^2-3x+2}=\dfrac{6x-2}{x-2}\left(x\ne2;x\ne1\right)\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-2\right)+x}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(6x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow2x^2-4x-x+2+x=6x^2-6x-2x+2\)
\(\Leftrightarrow2x^2-5x+2=6x^2-8x+2\)
\(\Leftrightarrow4x^2-3x=0\)
\(\Leftrightarrow x\left(4x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{3}{4}\left(TM\right)\end{matrix}\right.\)
KL........
\(b.A=\sqrt{x^2-x+1\dfrac{1}{4}}-2016=\sqrt{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+1}-2016=\sqrt{\left(x-\dfrac{1}{2}\right)^2+1}-2016\ge1-2016=-2015\)
\(\Rightarrow A_{Min}=-2015."="\Leftrightarrow x=\dfrac{1}{2}\)
K=(4x^2+4xy+y^2)+(x^2-2x+1)+(y^2+4y+4)+2016
=(2x+y)^2+(x-1)^2+(y+2)^2+2016 > =2016 với mọi x,y
minK=2016,dấu "=" xảy ra <=> x=1;y=-2
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
\(A=\left|x-1008\right|+\left|x-1008\right|+\left|2015-x\right|\ge0+x-1008+2015-x=1007\).
Đẳng thức xảy ra khi và chỉ khi \(x=1008\).