K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

\(A=4m^2+10m+9\)

\(A=4m^2+10m+\frac{25}{4}+\frac{11}{4}\)

\(A=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" khi: \(m=-\frac{5}{4}\)

30 tháng 3 2018

\(\left(2m+\frac{5}{4}\right)^2+\frac{11}{4}>\frac{11}{4}\)  thôi làm sao mà \(=\)  được hả bạn 

11 tháng 6 2015

A = \(\left(m^2-4mp+4p^2\right)+10\left(m-2p\right)+25+\left(p^2-2p+1\right)+2\)

  \(=\left(m-2p\right)^2+2.5.\left(m-2p\right)+5^2+\left(p-1\right)^2+2\)

  \(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Vậy: A min = 2 \(\Leftrightarrow m=-3;p=1\)

21 tháng 4 2023

- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:

\(x_1^2-2mx_1+4m=0\left(1'\right)\).

Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:

\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)

\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)

Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:

\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)

\(\Rightarrow-6mx_1+6m=0\)

\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)

*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:

\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)

Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).

30 tháng 1 2022

bài này có GTLN thôi bạn 

\(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt luôn có 2 nghiệm 

\(-2m-2\ge0\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

\(A=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

\(=\left|m^2+4m+3+4\left(m+1\right)\right|=\left|m^2+8m+7\right|\)

\(=\left|m^2+8m+16-9\right|=\left|\left(m+4\right)^2-9\right|\)

Ta có : \(m\le-1\Rightarrow m+4\le3\Leftrightarrow\left(m+4\right)^2\le9\Leftrightarrow\left(m+4\right)^2-9\le0\Rightarrow\left|\left(m+4\right)^2-9\right|\le\left|0\right|=0\)

Vậy với m = -1 thì A đạt GTNN là 0 

30 tháng 1 2022

sửa kết luận thì A đạt GTLN là 0 nhé 

NV
8 tháng 1 2023

\(\dfrac{4m^2-12m+9}{m^2-4m+5}=\dfrac{5\left(m^2-4m+5\right)-m^2+8m-16}{m^2-4m+5}=5-\dfrac{\left(m-4\right)^2}{\left(m-2\right)^2+1}\le5\)

Dấu "=" xảy ra khi \(m=4\)

5 tháng 1 2022

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(4m+1\right)^2-8\left(m-4\right)\ge0\)

\(\Leftrightarrow16m^2+33\ge0\left(\text{luôn đúng}\right)\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=4m+1\\x_1x_2=-2\left(m-4\right)\end{matrix}\right.\)

\(B=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(4m+1\right)^2+8\left(m-4\right)\\ B=16m^2+16m-31=4\left(4m^2+4m+1\right)-35=4\left(2m+1\right)^2-35\ge-35\)

Vậy \(B_{min}=-35\Leftrightarrow m=-\dfrac{1}{2}\)

5 tháng 1 2022

bn ơi cho tớ hỏi là trong vi ét: tổng = -b/a còn tích là c/a. lm bài này đc đổi dấu âm của tổng sang tích ạ? nghĩa là tổng= -b/a, tích =c/a sẽ đổi thành tổng= b/a tích = -c/a ạ? tớ tính bài của tớ tính A= 16m^2 +33 mà ko bt lms để đưa về GTNN ạ