K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

5 tháng 8 2015

a) 3 x^2 - 6x - 1

= 3 ( x^2 - 2x - 1/3 )

= 3 ( x^2 - 2x + 1 - 4/3)

= 3 [ ( x- 1 )^2 - 4/3)

=3 ( x-  1 )^2 - 4 

Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4 

VẬy GTNN là 4 khi x- 1 = 0 => x = 1 

b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )

= ( x - 1 )( x+ 6 )( x+  2 )( x+ 3 )

= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )

Đặt x^2 + 5x = t ta có :

  = ( t- 6 )( t+ 6 )

=  t^2 - 36

Vì t^2 >=0 => t^2 -36 >= -36 

VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5 

Nhớ **** 

13 tháng 6 2017

x = 0 hoặc x = 5 

ủng hộ mk nha thanks

3 tháng 10 2017

Bạn tham khảo ở đây nha!

Tìm GTNN của - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

2 tháng 8 2018

Ta có : A = x3 - 3x2 + 3x + 5 

              = (x3 - 3x2 + 3x - 1) + 6

           A = (x - 1)3 + 6

Vì x\(\ge2\) nên : ( x - 1)3 \(\ge1\) 

Suy ra : A = (x - 1)3 + 6 \(\ge1+6\)

Vậy A = \(\ge7\)

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

22 tháng 12 2019

Theo mình đề này chỉ có max thôi nha!

\(B=\frac{3x^2-18x+9}{x^2-4x+4}=-\frac{3\left(x+3\right)^2}{5\left(x-2\right)^2}+\frac{18}{5}\le\frac{18}{5}\)

Đẳng thức xảy ra khi \(x=-3\)

24 tháng 6 2015

A=3x2+5-2=3x2+3=3(x2+1)

Do x2>0

=>x2+1>1

=>3(x2+1)>3

=>Min A=3<=>x2=0<=>x=0

27 tháng 10 2020

Sửa đề: Tìm GTNN của \(C=x^2-3x+2017\)

Ta có:

\(C=x^2-3x+2017\)

\(C=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}+2014\)

\(C=\left(x-\frac{3}{2}\right)^2+2014\frac{3}{4}\ge2014\frac{3}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min_C=2014\frac{3}{4}\Leftrightarrow x=\frac{3}{2}\)