Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=4x^2+4x-1\)
\(=4x^2+4x+1-2\)
\(=\left(2x+1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
Bài 2:
Bình phương 2 vế
\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)
\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)
\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)
\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)
4x^2+4x-1
=4x^2+4x+1-2
=(2x+1)^2-2
=> (2x+1)^2\(\ge\)0 voi moi x
=> (2x+1)^2 \(\ge\)2
=> GTNN la 2
=2x-1+2x-3=4x-4=x^2-x^2+4x-4=x^2-(x^2-4x+4)=x^2-(x-2)^2 vay gtnn la x^2
\(C=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2+2y-2\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}+1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge\frac{-1}{2}\)
Đến đây dễ rồi
Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :
\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)
Lại đặt \(t=\frac{1}{y}\), \(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0
Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0