
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$


a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

\(a,\text{ }x^2+x+1=x+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ với mọi x nên: }\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\text{ với mọi x}\)
\(\text{Vậy GTNN của }x^2+x+1\text{ là }\frac{3}{4}\text{ tại }x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
\(b,2x^2+2x+1=2.\left(x^2+x+\frac{1}{2}\right)=2.\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(=2.\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\text{Vì }2.\left(x+\frac{1}{2}\right)^2\ge0\text{ nên: }2.\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
\(\text{Vậy GTNN của }2x^2+2x+1\text{ là }\frac{1}{2}\text{ tại }x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
GTNN của biểu thức \(A=x^2+2x=1\)
\(A=x^2+2x\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(x+\frac{1}{4}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Min \(A=\frac{-1}{4}\Leftrightarrow x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)