\(A=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

A = \(x-2\sqrt{xy}+y+2y-2\sqrt{x}+1\)

\(\left(\sqrt{x}-\sqrt{y}\right)^2-2\sqrt{x}+1+2y\)

vì \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) nên A\(\ge-2\sqrt{x}+1+2y\)

Vậy gtnn của A là -2... (*bạn tự biết ha?!)

p/s: theo mik nghĩ thì bài này làm vậy

1 tháng 5 2017

sai rùi đồ ngu

29 tháng 11 2015

\(\left(x-2\sqrt{xy}+y\right)+2y-2\sqrt{x}+1\)

<=>\(\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1+2y-2\sqrt{y}\)

<=>\(\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-\sqrt{y}+\frac{1}{2}-\frac{1}{2}\right)\)

<=>\(\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-1\)

=>\(A\ge-1\)

dấu bằng xảy ra <=>....

Tick cho mình nha

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

21 tháng 5 2016

\(A=x-2\sqrt{xy}+3y-2\sqrt{x}+1=\left(x+y+1-2\sqrt{xy}-2\sqrt{x}+2\sqrt{y}\right)+\left(2y-2\sqrt{y}\right)\)

\(=\left(-\sqrt{x}+\sqrt{y}+1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

\(\Rightarrow MinA=-\frac{1}{2}\Leftrightarrow\hept{\begin{cases}\sqrt{y}-\sqrt{x}+1=0\\\sqrt{y}-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{1}{4}\end{cases}}\)

9 tháng 10 2018

Ta có:

A = x 

9 tháng 10 2018

A=x ma la lm jup ha tu dung A=x bo tay

27 tháng 10 2019

a.\(DK:x,y>0\)

Ta co:

\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b.

Ta lai co:

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)

Dau '=' xay ra khi \(x=y=4\)

Vay \(A_{min}=1\)khi \(x=y=4\)

11 tháng 1 2017

\(2P=2x-4\sqrt{xy}+6y-4\sqrt{x}+4019\)

\(=\left(\left(x-4\sqrt{xy}+y\right)-\frac{2}{2}.\left(\sqrt{x}-2\sqrt{y}\right)+\frac{1}{4}\right)+\left(x-\frac{2.3.\sqrt{x}}{2}+\frac{9}{4}\right)+2\left(y-\frac{2\sqrt{y}}{2}+\frac{1}{4}\right)+4016\)

\(=\left(\left(\sqrt{x}-2\sqrt{y}\right)^2-\frac{2}{2}.\left(\sqrt{x}-2\sqrt{y}\right)+\frac{1}{4}\right)+\left(x-\frac{2.3.\sqrt{x}}{2}+\frac{9}{4}\right)+2\left(y-\frac{2\sqrt{y}}{2}+\frac{1}{4}\right)+4016\)

\(=\left(\sqrt{x}-2\sqrt{y}-\frac{1}{2}\right)^2+\left(\sqrt{x}-\frac{3}{2}\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2+4016\ge2016\)

\(\Rightarrow P\ge2008\)khi \(\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{1}{4}\end{cases}}\)

12 tháng 1 2017

tung hỏa mù hả sao tăng Hệ số lên làm gì?

​​căn x=a, căn y=b

​​P=(a^2+b^2-2ab-2a+2b+1)+(2b^2-2b+1/2)+2009+1/2-(1+1/2)

​P=(a-b-1)^2+2(b-1/2)^2+2008>=2008

​đăng thức b=1/2=>y=1/4; và a-1/2-1=0=>a=3/2=>x=9/4

12 tháng 5 2018

a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)

\(P=x+3y\)

b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)

Đặt \(t=\sqrt{\dfrac{x}{y}}>0\)\(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)

\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)

5 tháng 2 2020

Câu 1:

\(y^2+yz+z^2=1-\frac{3x^2}{2}\)

\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)

\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)

\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)

\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)

\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)

\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)

Câu 2:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Câu 3:

\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )

\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)

Áp dụng BĐT Cauchy:

\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)

\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

Câu 4:

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)

\(M=a^2-2ab+3b^2-2a+1\)

\(M=a^2-a\left(2b+2\right)+3b^2+1\)

\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)

\(=-8b^2+8b\)

\(=-8b\left(b+1\right)\ge0\)

\(b\ge0\) nên \(-8b\left(b+1\right)\le0\)

Dấu "=" xảy ra \(\Leftrightarrow b=0\)

Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

5 tháng 2 2020

Cau này e nghĩ không đáng là câu hỏi hay:v