K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

Amin = 1 

29 tháng 2 2016

Min A  =1 khi x= 2016 hoặc 2015

3 tháng 10 2015

 /x-2/>(=)0 với mọi x

=>5/x-2/>(=)0 với mọi x

=>5/x-2/ +2016 >(=) 2016 với mọi x

Dấu bằng xảy ra <=> x-2=0 =>x=2

vậy Amin =2016 <=> x=2

30 tháng 3 2018

\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

    \(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)

     \(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)

      \(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)

       \(=2+ \left|x-2016\right|\)

Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)

Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0

                                                              <=> x = 2016

Vậy Pmin = 2 khi x = 2016

30 tháng 3 2018

mk ko viết lại đề

P= |x-2015|+|x-2016|+|2017-x|

\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\) 

=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)

Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)

dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)

Vậy GTNN của P=2  \(\Leftrightarrow2015\le x\le2017\)

Ta có:

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=1\)

Vậy giá trị nhỏ nhất của A=1 khi \(x-2006\)\(2007-x\) cùng dấu

\(\Rightarrow2006\le x\le2007\)