Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+x+1/4+3/4
=(x+1/2)^2+3/4
=> A min=3/4
Câu kia tương tự .......
\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)
nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)
Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)
\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)
Vì \(2\left(x-1\right)^2\ge0,x\in R\)
nên \(2\left(x-1\right)^2+4\ge4,x\in R\)
Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Do \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall x\) nên:
\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)
\(A_{max}=3\) khi \(x=-1\)
\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)
\(A_{min}=\dfrac{1}{3}\) khi \(x=1\)
thầy giải cho em bài bài với:
Tìm GTLN: \(\dfrac{-x^2+x-10}{x^2-2x+1}\); x \(\ne\)1
A = ( x - 1 )2 + ( x + 2 )2
= x2 - 2x + 1 + x2 + 4x + 4
= 2x2 + 2x + 5
= 2( x2 + x + 1/4 ) + 9/2
= 2( x + 1/2 )2 + 9/2 ≥ 9/2 ∀ x
Dấu "=" xảy ra khi x = -1/2
=> MinA = 9/2 <=> x = -1/2
\(\left(x-1\right)^2+\left(x+2\right)^2\)
\(=x^2-2x+1+x^2+4x+4\)
\(=2x^2+2x+5\)
\(=2x^2+2x+\frac{1}{2}+\frac{9}{2}\)
\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{9}{2}\)
\(=2\left(x+\frac{1}{2}\right)^2+\frac{9}{2}\)
Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\)
\(2\left(x+\frac{1}{2}\right)\ge0\)
\(2\left(x+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu = xảy ra
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy GTNN của A là 9/2 khi và chỉ khi x = -1/2