Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
ko biet