\(\frac{x^2}{x-4}\) với x>4

b, P =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

12 tháng 12 2017

ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)

Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)

MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)

=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3

dấu = xảy ra <=> x=y=z

2 tháng 3 2020

\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)

\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1/2

Vậy min A = 15/2 tại x = y = z = 1/2

22 tháng 6 2020

Lời giải của em ạ :D

\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge x+y+z+\frac{9}{x+y+z}\)

Đặt \(t=x+y+z\le\frac{3}{2}\)

Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)

Đẳng thức xảy ra tại x=y=z=1/2

Mik ms làm lần đâu sai thì thôi nha :

 Để P nhỏ nhất thì 

 \(y^2+z^2+z^2+x^2+y^2+x^2\)

\(=\left(y^2+x^2+z^2\right)+z^2+x^2+y^2\)

\(=1+x^2+y^2+z^2\ge1\)

4 tháng 8 2016

b làm rõ hơn đc ko