Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)
\(a,=\dfrac{x^2-20+x^2-7x+10+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\\ b,=\dfrac{10x+15-4x+6+2x-9}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{4}{2x-3}\\ c,=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}\\ =\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{x+4-x}{x\left(x+4\right)}=\dfrac{4}{x\left(x+4\right)}\)
a.\(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\) : \(\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x+1\right)^2}\)
= \(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\). \(\dfrac{\left(x+1\right)^2}{\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{5\left(x+1\right)}{4\left(x+3\right)}\)
b. \(\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\). \(\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}\)
= \(\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
c.Tương tự hai câu trên nka!!
d. (\(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2-x}{x+1}\)).(\(\dfrac{x}{x-1}\))
=( \(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2x-x^2}{x\left(x+1\right)}\)). ....
= \(\dfrac{\left(1-x\right)^2}{x\left(x+1\right)}\). ...
= \(\dfrac{x-1}{x+1}\)
bt2.
A=[2(4x^2+4x+5)-2]/(4x^2+4x+5)
=2-2/[(4x+1)^2+4]
A>=2-2/4=3/2
khi x=-1/4
\(\text{a) }\dfrac{x^2+x+1}{x^2+2x+1}\\ =\dfrac{x^2+2x-x+1+1-1}{x^2+2x+1}\\ =\dfrac{\left(x^2+2x+1\right)-\left(x+1\right)+1}{x^2+2x+1}\\ =\dfrac{x^2+2x+1}{x^2+2x+1}-\dfrac{x+1}{\left(x+1\right)^2}+\dfrac{1}{\left(x+1\right)^2}\\ =1-\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}\left(1\right)\\ Đặt\text{ }\dfrac{1}{x+1}=y\\ \Rightarrow\left(1\right)=1-y+y^2\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{ 1}{x+1}=\dfrac{1}{2}\\ \Leftrightarrow x+1=2\\ \Leftrightarrow x=1\\ Vậy\text{ }GTNN\text{ }của\text{ }phân\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=1\)
\(\text{b) }\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\\ =\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\left(1\right)\\ Đặt\text{ }-\dfrac{1}{2x-1}=y\\ \Rightarrow\left(1\right)=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)