![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)
\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)
\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)
\(\Rightarrow A_{max}=2\) khi \(x=1\)
b)
\(x\ge0\)
\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)
\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
c) \(x\ge0\)
\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)
\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)
\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)
\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)
...
Ta thấy :\(x^2-2x+5=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\sqrt{x^2-2x+5}\ge\sqrt{4}=2\)
\(\Rightarrow\frac{1}{\sqrt{x^2-2x+5}}\le2\)
Xảy ra khi \(x=1\)