Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,2 kiểu gì ẹ
3,
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2
4.
Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)
<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)
Áp dụng BDT COSI thì
\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)
Do đó có dpcm
Làm tương tự rồi cộng lại ta đc bdt ban đầu
Dấu bằng xảy ra khi a=b=c
Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2
minA=-1 khi x=-1
maxA=1 khi x=1
có cách khác là xét A+1 tìm được min
xét A-1 tìm được max
\(A=\frac{x^2+x+1-\frac{3}{4}x^2-\frac{3}{2}-\frac{3}{4}+\frac{3}{4}\left(x^2+2x+1\right)}{x^2+2x+1}=\frac{\frac{1}{4}\left(x^2-2x+1\right)+\frac{3}{4}\left(x^2+2x+1\right)}{x^2+2x+1}\)
\(=\frac{1}{4}.\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN cùa A là \(\frac{3}{4}khix=1\)
Ta có:
\(B=\frac{x^4+x^2+5-\frac{19}{20}x^4-\frac{19}{10}x-\frac{19}{20}+\frac{19}{20}\left(x^4+2x^2+1\right)}{x^4+2x^2+1}=\frac{\frac{1}{20}\left(x^4-18x^2+81\right)+\frac{19}{20}\left(x^4+2x^2+1\right)}{x^4+2x^2+1}\)
\(=\frac{1}{20}.\frac{\left(x^2-9\right)^2}{\left(x^2+1\right)^2}+\frac{19}{20}\ge\frac{19}{20}\)
Vậy GTLN của B là 19/20 khi x = -3 hoăc x = 3.
Ta có: \(P=\frac{2x^2+7x+23}{x^2+2x+10}\Leftrightarrow P\left(x^2+2x+10\right)=2x^2+7x+23\)
\(\Leftrightarrow Px^2+2Px+10P-2x^2-7x-23=0\)
\(\Leftrightarrow\left(P-2\right)x^2+\left(2P-7\right)x+\left(10P-23\right)=0\)
\(\Delta=\left(2P-7\right)^2-4\left(P-2\right)\left(10P-23\right)\ge0\)
\(\Leftrightarrow4P^2-28P+49-4\left(10P^2-43P+46\right)\ge0\)
\(\Leftrightarrow4P^2-28P+49-40P^2+173P-184\ge0\)
\(\Leftrightarrow-36P^2+145P-135\ge0\)
\(\Rightarrow36P^2-145P+135\ge0\)
\(\Leftrightarrow P^2-\frac{145}{36}P+\frac{27}{29}\ge0\)
\(\Leftrightarrow\left(P^2-2\cdot\frac{145}{72}+\frac{21025}{5184}\right)-\frac{469757}{150336}\ge0\)
\(\Leftrightarrow\left(P-\frac{145}{72}\right)^2\ge\frac{469757}{150336}\)
\(\Rightarrow-\sqrt{\frac{469757}{150336}}\le P-\frac{145}{72}\le\sqrt{\frac{469757}{150336}}\)
\(\Leftrightarrow\frac{145}{72}-\sqrt{\frac{469757}{150336}}\le P\le\frac{145}{72}+\sqrt{\frac{469757}{150336}}\)
Vậy \(Min_P=\frac{145}{72}-\sqrt{\frac{469757}{150336}}\) và \(Max_P=\frac{145}{72}+\sqrt{\frac{469757}{150336}}\)