Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0
Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Dấu = xảy ra khi \(x+\frac{3}{2}=0\)
\(x=-\frac{3}{2}\)
Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)
Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)
\(y+\frac{1}{2}=0;y=-\frac{1}{2}\)
Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)
a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2
b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\)
\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)
\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)
Mà \(\left|4x-3\right|\ge0\)với mọi x
\(\left|5y+7,5\right|\ge0\)với mọi y
\(\Rightarrow A\)có GTNN là 10
Để A có GTNN thì :
\(4x-3=0\) \(5y+7,5=0\)
\(4x=3\) \(5y=-7,5\)
\(x=\frac{3}{4}\) \(y=-1,5\)
\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)
Mà \(\left|2,5-x\right|\ge0\)
\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)
Để B có GTLN \(\Rightarrow2,5-x=0\)
\(\Rightarrow x=2,5\)
Tim x
\(\left(-3,25\right):\left(\frac{-1}{3}x\right)=\left(-2\frac{1}{3}\right):\left(-0,25\right)\)
=> -3,25;(-1/3x)=28/3
=> -1/3x=28/3*(-3,25)
=> -1/3x=-91/3
=>x=-91/3:(-1/3)
=> x=91
vậy x=91
study well
k nha
mk xin cảm ơn mọi ng nhiều
(-3,25) : (\(-\frac{1}{3}x\)) = (\(-2\frac{1}{3}\)) : (-0,25)
<=> \(-\frac{1}{3}x\)= \(-\frac{39}{112}\)
<=>x = \(\frac{117}{112}\)
\(K=|x-1|+|x-2|+|x-3|\)
\(=\left(|x-1|+|x-3|\right)+|x-2|\)
\(=\left(|x-1|+|3-x|\right)+|x-2|\)
Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)
Hay \(A\ge2\left(1\right)\)
Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)
\(\Leftrightarrow1\le x\le3\)
Đặt \(B=|x-2|\)
Ta có: \(|x-2|\ge0;\forall x\)
Hay \(B\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)
Hay \(K\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)
Vậy MIN K=2 \(\Leftrightarrow x=2\)
\(E=\frac{1}{|x-2|+3}\)
Ta có
\(|x-2|\ge0\forall x\)
\(|x-2|+3\ge3\)
E đạt GTLN \(\Leftrightarrow|x-2|+3\) đạt GTNN
\(\Leftrightarrow x-2=0\)
\(x=2\)
Vậy với x = 2 thì GTNN của E = \(\frac{1}{|2-2|+3}=\frac{1}{3}\)
\(E=\frac{1}{\left|x-2\right|+3}\)
Ta có : | x - 2 | ≥ 0 ∀ x => | x - 2 | + 3 ≥ 3
=> \(\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\left(\forall x\right)\)
Dấu "=" xảy ra <=> | x - 2 | + 3 = 3
<=> | x - 2 | = 0
<=> x = 2
=> MaxE = 1/3 <=> x = 2