K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

a/ \(8x-x^2\)

\(=-\left(x^2-8x\right)\)

\(=-\left(x^2-2\cdot4x+16-16\right)\)

\(=-\left(x-4\right)^2+16\)

Có \(\left(x-4\right)^2\ge0\)

\(\Rightarrow-\left(x-4\right)^2\le0\)

\(\Rightarrow-\left(x-4\right)^2+16\le16\)

\(\Rightarrow GTLN\left(8x-x^2\right)=16\)

với \(\left(x-4\right)^2=0;x=4\)

b/ \(\frac{3}{x^2-4x+10}\)

Xét mẫu số ta có : \(x^2-4x+10\)

\(=x^2-2\cdot2x+4-4+10\)

\(=\left(x-2\right)^2-4+10\)

\(=\left(x-2\right)^2+6\)

Có \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2+6\ge6\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2+6}\le\frac{3}{6}\)

\(\Rightarrow GTLN\frac{3}{x^2-4x+10}=\frac{3}{6}\)

với \(\left(x-2\right)^2=0;x=2\)

18 tháng 6 2019

c/ cái này f GTNN chứ bạn, mik thấy kq ra dương , bạn ktra giúp mik nha.

 \(x^2+y^2\)

Có \(x+y=2\Rightarrow x=2-y\)

\(x^2+y^2\)

\(=\left(2-y\right)^2+y^2\)

\(=4-4y+y^2+y^2\)

\(=4-4y+y^2\)

\(=2y^2-4y+4\)

\(=2\left(y^2-2y+2\right)\)

\(=2\left(y^2-2\cdot1y+1+1\right)\)

\(=2\left[\left(y-1\right)^2+1\right]\)

\(=2\left(y-1\right)^2+2\)

Có \(\left(y-1\right)^2\ge0\Rightarrow\left(y-1\right)^2+2\ge2\)

\(\Rightarrow GTNN2\left(y-1\right)^2+2\ge2\)

 với \(\left(y-1\right)^2=0;y=1\)

\(\Rightarrow GTNN\left(x^2+y^2\right)\ge2\)với\(x=1;y=1\)

6 tháng 1 2021

a)Ta có:

\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)

\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)

Vậy MaxA=-3 khi x=1

b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2

Sai rồi bạn

b: =>4x^2+8x-8x^2+5x-10=0

=>-4x^2+13x-10=0

=>x=2 hoặc x=5/4

c: =>2x^2-5x+6x-15=2x^2+8x

=>x-15=8x

=>-7x=15

=>x=-15/7

d: =>3x^2+15x-2x-10-3x^2-12x=5

=>x-10=5

=>x=15

e: =>x^2-3x+2x^2+2x=3x^2-12

=>-x=-12

=>x=12

16 tháng 8 2021

undefined

16 tháng 8 2021

cám ơn nhìu ạ 

 

4 tháng 10 2021

ta có 4 x 3 y 2   –   8 x 2 y 3   =   4 x 2 y 2 . x   –   4 x 2 y 2 . 2 y   =   4 x 2 y 2 ( x   –   2 y )    

Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)      

Đáp án cần chọn là: C

bấm đúng cho mik đi 

30 tháng 9 2021

Bài 1:

a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)

\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)

b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)

\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Bài 2:

\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

30 tháng 9 2021

bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

8 tháng 7 2019

\(1a,8x^2y^2-12x^3+6x^2\)

\(=2\left(4x^2y^2-13x^3+3x^2\right)\)

\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )

\(=\left(x-y\right)\left(5x-1\right)\)

\(c,4x\left(x-2\right)-\left(2-x\right)^2\)

\(=4x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)

\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)

\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

8 tháng 7 2019

phần b làm theo đề thôi nhé ko biết đầu bài đúng ko

\(5x\left(x-y\right)-\left(y-y\right)\)

\(=5x\left(x-y\right)\)

HA ha ngắn gọn vãi

Bài 4 :

a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)

b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)

c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)

d)

\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)

e) Trùng câu d

f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)

Bài 5:

a) \(x^3-x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...

b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\

\(\Leftrightarrow2x-3=6\)

\(\Leftrightarrow x=\frac{9}{2}\)

vậy........

c) \(x^4+2x^3-6x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)

Vậy

d) \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy ........