Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=4x^2+4xy+2y\left(y-2\right)=4x^2+4xy+2y^2-4y.\)
\(=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-4\)
\(=\left(2x+y\right)^2+\left(y-2\right)^2-4\ge-4\)
MinM=-4
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2
b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)
c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)
\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)
d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)
\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)
\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)
Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)
e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)
bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v
\(H=x^2+\left(x-2\right)\left(3x-1\right)\)
\(=x^2+3x^2-x-6x+2\)
\(=4x^2-7x+2\)
\(=\left(2x\right)^2-2\cdot2\cdot\frac{7}{4}x+\left(\frac{7}{4}\right)^2-\frac{17}{16}\)
\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)
Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge-\frac{17}{16}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(2x-\frac{7}{4}\right)^2=0\)
\(\Leftrightarrow x=\frac{7}{8}\)
Vậy \(H_{min}=-\frac{17}{16}\)tại \(x=\frac{7}{8}\)
\(x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)
\(=4x^2-7x+\frac{49}{16}-\frac{17}{16}\)
\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)
Vì: \(\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{17}{16}\forall x\)
=> Min H =17/16 tại \(\left(2x-\frac{7}{4}\right)^2=0\Rightarrow x=\frac{7}{8}\)
=.= hok tốt!!
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Bài 1:
a) Ta có: \(x^2+4y^2-4xy=\left(x-2y\right)^2\)(*)
Thay x=18, y=4 vào biểu thức (*), ta được
\(\left(18-2\cdot4\right)^2=\left(18-8\right)^2=100\)
Vậy: 100 là giá trị của biểu thức \(x^2+4y^2-4xy\) tại x=18 và y=4
b) Ta có: \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2\)(1)
Thay x=100 vào biểu thức (1), ta được
\(\left(4\cdot100\right)^2=400^2=160000\)
Vậy: 160000 là giá trị của biểu thức \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)tại x=100
Bài 2:
a) Để giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định thì \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)
Vậy: khi \(x\notin\left\{0;5\right\}\) thì giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định
b) Để giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định thì
\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
Vậy: khi \(x\notin\pm2\) thì giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định
Bài 1:
\(a,x^2+4y^2-4xy\)
\(=\left(x-2y\right)^2\left(1\right)\)
Thay \(x=18;y=4\) vào \(\left(1\right)\) ta được:
\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)
Vậy ......................................
\(b,\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2.\left(4x^2-1\right)\)
Thay \(x=100\) vào biểu thức trên ta được:
\(\left(2.100+1\right)^2+\left(2.100-1\right)^2+2\left(4.100^2-1\right)\)
\(=201^2+199^2+2.39989\)
\(=40401+39601+79978\)
\(=160000\)
Vậy ............................
Bài 2:
\(a,\frac{x^2-10x+25}{x^2-5x}\)
Để biểu thức trên được xác định \(\Leftrightarrow x^2-5x\ne0\)
\(\Leftrightarrow x\left(x-5\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)
\(b,\frac{x^2-10x}{x^2-4}\)
Để biểu thức trên xác định \(\Leftrightarrow x^2-4\ne0\)
\(\Leftrightarrow x^2-2^2\ne0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)
\(K=5x^2+4xy+y\left(y-4\right)-10x\)
\(K=5x^2+4xy+y^2-4y-10x\)
\(K=\left(4x^2+4xy+y^2\right)+x^2-4y-10x\)
\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).2+4\right]+\left(x^2-2x+1\right)-5\)
\(K=\left(2x+y-2\right)^2+\left(x-1\right)^2-5\)
Mà \(\left(2x+y-2\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow K\ge-5\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-2=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(K_{Min}=-5\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
\(K=5x^2+4xy+y\left(y-4\right)-10x.\)
\(=\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2-2x+1\right)-1\)
\(=\left(\left(2x\right)^2+y^2+2^2+2.2x.y-2.2x.2-2.y.2\right)+\left(x^2-2x+1\right)-1\)
\(=\left(2x+y-2\right)^2+\left(x-1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi
\(\hept{\begin{cases}\left(2x+y-2\right)^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)