Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.A=\dfrac{3-x}{x^2-2}\)
\(\Leftrightarrow Ax^2-2A-3+x=0\)
\(\Leftrightarrow Ax^2+x-2A-3=0\)
\(\Delta=b^2-4ac\ge0\)
\(\Leftrightarrow1-4.A\left(-2A-3\right)\ge0\)
\(\Leftrightarrow1+8A^2+12A\ge0\)
\(\Leftrightarrow8A^2+12A+1\ge0\)
\(\Leftrightarrow\dfrac{-3-\sqrt{7}}{4}\le A\le\dfrac{-3+\sqrt{7}}{4}\)
Suy ra: \(Min_A=\dfrac{-3-\sqrt{7}}{4}\Leftrightarrow x=\dfrac{-b}{2A}=\dfrac{-1}{2.\dfrac{-3-\sqrt{7}}{4}}=3-\sqrt{7}\)
\(Max_A=\dfrac{-3+\sqrt{7}}{4}\Leftrightarrow x=\dfrac{-b}{2A}=\dfrac{-1}{2.\dfrac{-3+\sqrt{7}}{4}}=3+\sqrt{7}\)
\(b.B=\dfrac{x^2-x}{x^2+1}\)
\(\Leftrightarrow Bx^2+B-x^2+x=0\)
\(\Leftrightarrow\left(B-1\right)x^2+x+B=0\)
\(\Delta=b^2-4ac=1^2-4.B.\left(B-1\right)\)
\(=1-4B^2+4B\)
\(\Leftrightarrow\dfrac{1-\sqrt{2}}{2}\le B\le\dfrac{1+\sqrt{2}}{2}\)
\(\Leftrightarrow Min_B=\dfrac{1-\sqrt{2}}{2}\Leftrightarrow x=\dfrac{-b}{2B}=\dfrac{-1}{2.\dfrac{1-\sqrt{2}}{2}}=1+\sqrt{2}\)
\(Max_B=\dfrac{1+\sqrt{2}}{2}\Leftrightarrow x=\dfrac{-b}{2B}=\dfrac{-1}{2.\dfrac{1+\sqrt{2}}{2}}=1-\sqrt{2}\)
P/S: Mk làm thế nhưng khi thử thay x vào thì không đúng, bn xem lại giúp nha
a: \(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=-1/2
b: \(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=-1/2
Bài 1:
A.\(\left(\sqrt{x}+2\right)\) = -1 (ĐK: \(x\ge0\)
\(\Leftrightarrow\dfrac{1}{x-4}\left(\sqrt{x}+2\right)=-1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}-2}=-1\)
\(\Leftrightarrow\sqrt{x}-2=-1\)
\(\Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1\left(TM\right)\)
Vậy x = 1
Bài 2: ĐK: \(x\ge0\)
Để \(B\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3\right\}\)\(\Leftrightarrow x\in\left\{1\right\}\)
Bài 3:
a, Ta có: \(x+\sqrt{x}+1=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+1\\ =\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có: 2 > 0 và \(x+\sqrt{x}+1>0\Rightarrow C>0\) và \(x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(C=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có: \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)
Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow x=0\left(TM\right)\)
Vậy MaxC = 2 khi x = 0
Còn cái GTNN chưa tính ra được, để sau nha
Bài 4: ĐK: \(x\ge0,x\ne1\)
\(D=\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)
\(=\sqrt{x}-1\)
\(D=3\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=2\left(TM\right)\)
\(D=x-3\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}-1=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(L\right)\\x=9\left(TM\right)\end{matrix}\right.\)
Bài 5: \(E< -1\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}+1< 0\Leftrightarrow\dfrac{-3x+2x+4\sqrt{x}}{2x+4\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-x}{2x+4\sqrt{x}}< 0\Leftrightarrow\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)
Ta có: \(\sqrt{x}>0\Leftrightarrow x>0\Leftrightarrow2x+4\sqrt{x}>0\) mà \(\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)\(\Rightarrow\sqrt{x}\left(4-\sqrt{x}\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\left(L\right)\\4-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\4-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\0< x< 16\end{matrix}\right.\)
Bài 1:
ta có: C=\(\dfrac{x}{1-x}+\dfrac{5}{x}=\dfrac{x}{1-x}+\dfrac{5-5x+5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+\dfrac{5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+5\)
Vì 0<x<1==> \(\dfrac{x}{1-x}>0,\dfrac{5.\left(1-x\right)}{x}>0\)
Asp dụng BĐT coossi cho 2 số dg ta đc
\(\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}>=2.\sqrt{\dfrac{x}{1-x}.\dfrac{5.\left(1-x\right)}{x}}\)=2\(\sqrt{5}\)
==> C >= 2\(\sqrt{5}+5\)
Dấu ''='' xảy ra <=>\(\dfrac{x}{1-x}=\dfrac{5.\left(1-x\right)}{x}< =>x^{2^{ }}=5.\left(1-x\right)^2\)
<=> x=\(\dfrac{5-\sqrt{5}}{4}\)
Vậy..............
bài 2 :
ta có A= -x+2.\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)
= [ (x-3) + 2\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)+( 1-2x)] +2
= ( \(\sqrt{x-3}+\sqrt{1-2x}\))2+2
Nhận thấy( \(\sqrt{x-3}+\sqrt{1-2x}\))2>= 0
==> A >= 2
dấu ''='' xáy ra <=>( \(\sqrt{x-3}+\sqrt{1-2x}\))2=0
<=> \([^{x=3}_{x=\dfrac{1}{2}}\)
vậy..............
a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{4x-20}=4\)
\(\Leftrightarrow4x-20=16\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
vậy ...
1)
\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)
\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)
\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)
\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(2x+\sqrt{5-x^2})^2\leq (x^2+5-x^2)(2^2+1)=25\)
\(\Rightarrow A\leq 5\)
Vậy \(A_{\max}=5\Leftrightarrow x=2\)
Tìm min:
ĐKXĐ: \(5-x^2\geq 0\Leftrightarrow -\sqrt{5}\leq x\leq \sqrt{5}\)
Do đó : \(A=2x+\sqrt{5-x^2}\geq 2x\geq -2\sqrt{5}\)
Vậy \(A_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)
Bài 2 bạn xem xem có viết nhầm đề bài không nhé.
\(A=\frac{3a}{2a-b}+\frac{3c}{2c-b}-2\)
Chỉ cần cho $b$ càng nhỏ thì giá trị của $A$ càng nhỏ rồi, mà lại không có điều kiện gì của $b$ ?
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
a. A=\(\dfrac{-2}{x^{2^{ }}-2x+5}\)= \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)
Ta có: (x-1) 2 ≥ 0 với mọi x
⇔ (x- 1)2 +4 ≥4
⇔ \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)≤ \(\dfrac{-2}{4}\) = \(\dfrac{-1}{2}\)
Dấu''='' xảy ra ⇔ x-1=0
⇔x=1
Vậy maxA= -0,5 ⇔ x=1
b. B=\(\dfrac{3}{x^{2^{ }}-2x+1}\)=\(\dfrac{3}{\left(x-1\right)^2}\)
Ta có: (x-1)2 ≥ 0 với mọi x
⇔ \(\dfrac{3}{\left(x-1\right)^2}\)≤0