Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
a: \(2\left(x-1\right)^2+3\ge3\)
nên \(A=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)
Dấu '=' xảy ra khi x=1
b: \(C=x^4+3x^2+2\ge2\)
Dấu '=' xảy ra khi x=0
d: \(E=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu '=' xảy ra khi x=1 và y=-2
e: \(F=2\left|3x-2\right|-1\ge-1\)
Dấu '=' xảy ra khi x=2/3
a,xet cac th sau
x<1'=>1-x+4+x=4=>3-2x=4
=>2x=-1=>x=-1/2
th2 1<x,<5
=>x-1+4+x=4<=>3=4(vo li)
vay x=-1/2
1: \(\left(x-\dfrac{1}{2}\right)^2>=0\forall x\)
=>\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
2: \(\left|3x-1\right|>=0\forall x\)
=>\(\left|3x-1\right|-5>=-5\forall x\)
Dấu '=' xảy ra khi 3x-1=0
=>3x=1
=>\(x=\dfrac{1}{3}\)
3: \(\left(2-x\right)^2>=0\forall x\)
=>\(-\left(2-x\right)^2< =0\forall x\)
=>\(C=-\left(2-x\right)^2+5< =5\forall x\)
Dấu '=' xảy ra khi 2-x=0
=>x=2
4: \(\left(x^2-4\right)^2>=0\forall x\)
\(\left|y-x\right|>=0\forall x,y\)
Do đó: \(\left(x^2-4\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(D=\left(x^2-4\right)^2+\left|y-x\right|+3>=3\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x^2-4=0\\y-x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y=x\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}y=x=2\\y=x=-2\end{matrix}\right.\)
5: \(\left(x-1\right)^2>=0\forall x\)
\(\left(x^2-1\right)^4>=0\forall x\)
Do đó: \(E=\left(x-1\right)^2+\left(x^2-1\right)^4>=0\forall x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\)
=>x=1
6: \(\left(x+3\right)^2+3>=3\forall x\)
=>\(F=\dfrac{2}{\left(x+3\right)^2+3}< =\dfrac{2}{3}\forall x\)
Dấu '=' xảy ra khi x+3=0
=>x=-3
7: \(\left(x^2+1\right)^2>=1^2=1\forall x\)
=>\(\left(x^2+1\right)^2+2022>=2023\forall x\)
=>\(G=\dfrac{2023}{\left(x^2+1\right)^2+2022}< =\dfrac{2023}{2023}=1\forall x\)
Dấu '=' xảy ra khi x=0
Bạn chia từng bài ra ý nhỏ để dễ làm hơn ạ.