K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(x^2+10y^2+2y-6xy+7=\left(x^2-6xy+9y^2\right)+\left(y^2+2y+1\right)+6=\left(x-3y\right)^2+\left(y+1\right)^2+6\ge6\)\(min=6\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

16 tháng 9 2021

\(x^2+10y^2+2y-6xy+7\\ =\left(x^2-6xy+9y^2\right)+\left(y^2+2y+1\right)+6\\ =\left(x-3y\right)^2+\left(y+1\right)^2+6\ge6\)

\(BT_{max}=6\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

 

8 tháng 10 2020

A = -x2 + 2xy - 4y2 + 2x + 10y - 8

=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8

          = ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5

          = [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5

          = [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5

          = ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y

Dấu "=" xảy ra <=> x = 3 ; y = 2

=> -A ≥ -5

=> A ≤ 5

=> MaxA = 5 <=> x = 3 ; y = 2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975

= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975

= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975

= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y

Dấu "=" xảy ra <=> x = 5 ; y = 7/3

=> MinB = 1975 <=> x = 5 ; y = 7/3

8 tháng 10 2020

Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8

A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]

A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]

A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5

A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x

Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0

=>x = -1 và y = -2

Vậy MaxA = 5 khi x = -1 và y = -2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975

B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975

đoạn cuối tt trên

15 tháng 11 2016

\(B=3x^2-5x+7=3\left(x-\frac{5}{6}\right)^2+\frac{59}{12}\ge\frac{59}{12}\)

\(C=x^2-4x+3+11=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)

\(D=-x^2-4x-y^2+2y=-\left(x^2-4x+4\right)-\left(y^2-2y+1\right)+5=-\left[\left(x-2\right)^2+\left(y-1\right)^2\right]+5\le5\)

25 tháng 11 2015

A=(x2+y2+1-2xy+2x-2y)+(y2-8y+16)
A=(x-y+1)2+(y-4)2>=0
MinA=0 khi và chỉ khi xảy ra đồng thời y-4=0 và x-y+1=0
                                               <=>y=4;x=3

7 tháng 7 2016

đề sai ko thể nào là GTNN

7 tháng 7 2016

Lớn nhất

Đề bài là gì sao không ghi rõ?? 

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

18 tháng 7 2017

A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017

Dấu "=" xảy ra khi      \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)

Vậy MinA= 2017 khi x=1; y=-1

 

A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)

Vậy Max A bằng 7 khi x=1; y=-1/2