Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
a ) Đặt \(A=\sqrt{x-2}+\sqrt{4-x}\). Nhận xét A > 0
\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Vì \(\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\Rightarrow A^2\ge2\)
\(\Rightarrow A\ge\sqrt{2}\)(Vì A > 0)
Dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}2\le x\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
Vậy ....
b) Tương tự .
c) Đề phải là tìm GTLN
\(C=\left|x\right|\sqrt{1-x^2}=\sqrt{x^2\left(1-x^2\right)}\) . Áp dụng bđt Cauchy : \(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(x^2=1-x^2\Leftrightarrow x=\frac{\sqrt{2}}{2}\)hoặc \(x=-\frac{\sqrt{2}}{2}\)
Vậy ....
GTNN dễ thấy bằng 0 tại x = 0 hoặc x = -1 hoặc x = 1
a)Ta cần chứng minh BĐT \(\sqrt{T}+\sqrt{H}\ge\sqrt{T+H}\)
2 vế luôn dương bình phương ta có:
\(\left(\sqrt{T}+\sqrt{H}\right)^2\ge\left(\sqrt{T+H}\right)^2\)
\(T+H+2TH\ge T+H\)
\(2TH\ge0\) (luôn đúng do \(TH\ge0\))
Dấu = xảy ra khi \(TH\ge0\)
Áp dụng ta có \(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
Dấu = xảy ra khi (x-2)(4-x)\(\ge\)0 suy ra \(\orbr{\begin{cases}2\le0\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
Vậy ....
b) Áp dụng tương tự ta có:
\(\sqrt{7-x}+\sqrt{x-5}\ge\sqrt{7-x+x-5}=\sqrt{2}\)
Dấu = khi (7-x)(x-5)\(\ge\)0 suy ra \(\orbr{\begin{cases}x\le5\le7\\\left(7-x\right)\left(x-5\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=7\\x=5\end{cases}}\)
Vậy...
c)Ta thấy \(\left|x\right|\sqrt{1-x^2}\ge0\)
Dấu = khi x=0 hoặc x=±1
Lời giải:
Ta có:
\(A=x\sqrt{x}+y\sqrt{y}=(\sqrt{x})^3+(\sqrt{y})^3=(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(=x-\sqrt{xy}+y=(\sqrt{x}+\sqrt{y})^2-3\sqrt{xy}\)
\(=1-3\sqrt{xy}\)
Ta thấy \(\sqrt{xy}\geq 0\Rightarrow A=1-3\sqrt{xy}\leq 1\)
Vậy \(A_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
Lại có, theo BĐT Cô-si:
\(1=\sqrt{x}+\sqrt{y}\geq 2\sqrt{\sqrt{x}.\sqrt{y}}=2\sqrt[4]{xy}\)
\(\Rightarrow \sqrt{xy}\leq \frac{1}{4}\)
\(\Rightarrow A=1-3\sqrt{xy}\geq 1-3.\frac{1}{4}=\frac{1}{4}\)
Vậy \(A_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1