\(\sin^22x.\cos^22x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 7 2020

\(y=4-\frac{5}{4}\left(2sin2x.cos2x\right)^2\)

\(y=4-\frac{5}{4}sin^24x\)

Do \(0\le sin^24x\le1\)

\(\Rightarrow\frac{11}{4}\le y\le4\)

\(y_{min}=\frac{11}{4}\) khi \(sin^24x=1\)

\(y_{max}=4\) khi \(sin^24x=0\)

20 tháng 7 2020

cảm ơn ạ

NV
26 tháng 5 2019

\(y=2\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+cos^22x=cos^22x-cos2x+1\)

\(=\left(cos2x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos2x=\frac{1}{2}\)

\(y=cos^22x-2cos2x+cos2x-2+3\)

\(y=\left(cos2x-2\right)\left(cos2x+1\right)+3\)

Do \(-1\le cos2x\le1\Rightarrow\left\{{}\begin{matrix}cos2x-2< 0\\cos2x+1\ge0\end{matrix}\right.\) \(\Rightarrow\left(cos2x-2\right)\left(cos2x+1\right)\le0\)

\(\Rightarrow y\le3\Rightarrow y_{max}=3\) khi \(cos2x=-1\)

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

18 tháng 8 2020

bạn ơi, cho mình hỏi là tại sao từ bước 2 xuống bước 3, tử sin22x-2 lại đổi thành 2-sin22x vậy ạ

NV
18 tháng 8 2020

Nhân cả tử và mẫu với -1 thôi bạn

\(=\frac{2-sin^22x}{4cos^2x\left(1-sin^2x\right)}=\frac{2-sin^2x}{4cos^2x.cos^2x}\)

y=(sin2x-3)^2-6

-1<=sin2x<=1

=>-4<=sin2x-3<=-2

=>4<=(sin2x-3)^2<=16

=>-2<=y<=10

y min khi sin2x-3=-2

=>sin 2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

y max khi sin 2x-3=-4

=>sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

12 tháng 9 2016

a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)

\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)

\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)

\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)

\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)

\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)

\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)

\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)

12 tháng 9 2016

b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)

\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)

\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)

\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)

\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)

2 tháng 9 2019

sin2 2x = cos2 2x + cos3x

\(\Leftrightarrow\)\(\frac{1\:-\:cos\:4x}{2}\)= \(\frac{1+cos\:4x}{2}\)+ \(\)cos3x

\(\Leftrightarrow\) 1- cos4x - 1 - cos4x= 2cos3x

\(\leftrightarrow\) -2cos4x = 2cos3x

\(\leftrightarrow\) cos4x= -cos3x

\(\leftrightarrow\) cos4x = cos( π -3x )

NV
20 tháng 8 2020

Dấu "=" thứ 2 là bạn nhầm dấu "+" đúng ko nhỉ?

\(y=4cos^22x+3sin^22x-4cos4x\)

\(y=4\left(\frac{cos4x+1}{2}\right)+3\left(\frac{1-cos4x}{2}\right)-4cos4x\)

\(y=\frac{7}{2}-\frac{7}{2}cos4x\)

Do \(-1\le cos4x\le1\Rightarrow0\le y\le7\)

\(y_{min}=0\) khi \(cos4x=1\)

\(y_{max}=7\) khi \(cos4x=-1\)