Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chỉ tìm được GTLN thôi nhé bạn.
Ta thấy \(A=-\dfrac{1}{3}x^2+2x\)
\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)
\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)
\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)
Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).
Nhận xét : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\)
\(A=\frac{x+1}{x^2+x+1}\) \(\Leftrightarrow A\left(x^2+x+1\right)=x+1\Leftrightarrow Ax^2+x\left(A-1\right)+\left(A-1\right)=0\) (*)
Ta coi PT trên là PT bậc hai ẩn x.
Xét biệt thức \(\Delta=\left(A-1\right)^2-4A\left(A-1\right)=-3A^2+2A+1=\left(1-A\right)\left(3A+1\right)\)
Để tồn tại GTLN và GTNN tức là tồn tại giá trị của x thỏa mãn PT (*) có nghiệm, tức \(\Delta\ge0\)
Hay \(-\frac{1}{3}\le A\le1\)
Từ đó tìm được min A = -1/3 và max A = 1 (bạn tự tìm x)
\(A=\frac{2y+2}{y^2+3}\Leftrightarrow\)
\(A-1=\frac{\left(2y+2\right)-y^2-3}{y^2+3}=\frac{-\left(y-1\right)^2}{y^2+3}\le0\Rightarrow A\le1\) đẳng thức khi y=1=> x=0
ay^2+3a-2y-2
1-a(3a-2)=3a^2-2a-1<0
a=1
a=-1/3
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Ta có :
\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2
\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2
đặt \(A=\frac{4x+3}{x^2+1}=a\)
<=>ax2+a=4x+3
<=>ax2-4x+a-3=0
\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)
\(\Leftrightarrow4a^2-12a-16\le0\)
\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)
\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)
Vậy Min A=-1;Max A=4
Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath
Mong mn giúp đỡ mình nhé