Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)
\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(A>\frac{100}{10}=10\left(đpcm\right)\)
2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)
Để A đạt giá trị nhỏ nhất thì
\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN
\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN
\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\sqrt{x}\) đạt GTNN
\(\Leftrightarrow x=0\)
\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)
Ta có: \(\sqrt{x}\ge0\)
\(\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}\)
Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Ta có: \(\sqrt{x-1}\ge0\)
\(\Leftrightarrow2\sqrt{x-1}\ge0\)
\(\Leftrightarrow-2\sqrt{x-1}\le0\)
\(\Leftrightarrow7-2\sqrt{x-1}\le7\)
Vậy \(Q_{max}=7\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a. Ta có : Căn bậc hai của x+2 luôn >_0 vs mọi x
→ A>_ 0+3/11 =3/11
Dấu "= " xảy ra <=> x+2= 0 <=> x=-2
A: GTLN : 1
GTNN : 0
B: GTLN : 1
GTNN :0
Làm thế nào bn