Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(A=3+\dfrac{2}{x^2+4}\)
\(A_{max}\) khi \(\dfrac{2}{x^2+4}\) lớn nhất, mà \(\dfrac{2}{x^2+4}\) lớn nhất khi \(x^2+4\) nhỏ nhất
\(x^2+4\ge4\Rightarrow A_{max}=3+\dfrac{2}{4}=\dfrac{7}{2}\) khi \(x^2+4=4\Rightarrow x=0\)
\(A_{min}\) khi \(\dfrac{2}{x^2+4}\) nhỏ nhất \(\Rightarrow x^2+4\) lớn nhất. Mà GTLN của \(x^2+4\) không tồn tại \(\Rightarrow A_{min}\) không tồn tại
Hoặc 1 cách khác:
\(Ax^2+4A=3x^2+14\Rightarrow\left(A-3\right)x^2=14-4A\Rightarrow x^2=\dfrac{14-4A}{A-3}\)
Do \(x^2\ge0\forall x\Rightarrow\dfrac{14-4A}{A-3}\ge0\Rightarrow3< A\le\dfrac{14}{4}\)
\(\Rightarrow A_{max}=\dfrac{14}{4}=\dfrac{7}{2}\) ; \(A_{min}\) không tồn tại (ko có dấu = ở số 3)
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
a) ta có : \(L\left(x\right)=\dfrac{3x^2+17}{x^2+4}=\dfrac{3x^2+12+5}{3x^2+4}=3+\dfrac{5}{3x^2+4}\)
\(\Rightarrow\) để \(L\left(x\right)\) đạt giá trị lớn nhất \(\Leftrightarrow3x^2+4\) nhỉ nhất \(\Leftrightarrow x=0\)
vậy GTLN của \(L\left(x\right)=3+\dfrac{5}{4}=\dfrac{17}{4}\) khi \(x=0\)
b) bài này mk chuyển \(Q\left(x\right)\) thành \(Q\) cho dể nhìn nha
ta có : \(Q=\dfrac{x^2+4}{x}\Leftrightarrow x^2-Qx+4=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow Q^2-4.4\ge0\Leftrightarrow Q^2-16\ge0\Leftrightarrow Q^2\ge16\Leftrightarrow Q\ge4\)
vậy giá trị nhỏ nhất của \(Q\) là \(4\) dấu "=" xảy ra khi \(x=-\dfrac{b}{2a}=\dfrac{Q}{2}=\dfrac{4}{2}=2\)
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
bài b câu 1 vì |2x-1|≥0 |2x-1|≥0 với mọi x do đó GTNN của 3+ |2x-1|/14 là 3/14 khi x=0,5
a. \(A+1=\dfrac{27-12x+x^2+9}{x^2+9}\)
\(\Rightarrow A+1=\dfrac{x^2-12x+36}{x^2+9}\)
\(\Rightarrow A+1=\dfrac{\left(x-6\right)^2}{x^2+9}\ge0\)
Min A+1 = 0
=> Min A = -1
Dấu = xảy ra khi và chỉ khi x = 6
\(4-A=\dfrac{4x^2+36-27+12x}{x^2+9}\)
\(4-A=\dfrac{4x^2+12x+9}{x^2+9}\)
\(4-A=\dfrac{\left(2x+3\right)^2}{x^2+9}\)
\(A=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)
=> Max A= 4
Dấu = xảy ra khi và chỉ khi \(x=\dfrac{-3}{2}\)
B=\(\dfrac{8x+3}{4x^2+1}=\dfrac{4x^2+8x+4-4x^2-1}{4x^2+1}\)
=\(\dfrac{\left(4x^2+8x+4\right)-\left(4x^2+1\right)}{4x^2+1}=\dfrac{4\left(x^2+2x+1\right)}{4x^2+1}-1\)
=\(\dfrac{4\left(x+1\right)^2}{4x^2+1}-1\)
=> Min B=-1 dấu = xảy ra khi x=-1
B=\(\dfrac{8x+3}{4x^2+1}=\dfrac{16x^2+4-16x^2+8x-1}{4x^2+1}\)
=\(\dfrac{\left(16x^2+4\right)-\left(16x^2-8x+1\right)}{4x^2+1}=\dfrac{4\left(4x^2+1\right)-\left(4x-1\right)^2}{4x^2+1}\)
=\(\dfrac{4\left(4x^2+1\right)}{4x^2+1}-\dfrac{\left(4x-1\right)^2}{4x^2+1}\)=\(4-\dfrac{\left(4x-1\right)^2}{4x^2+1}\)
=> Max B=4 dấu = xảy ra khi x=\(\dfrac{1}{4}\)
\(-Ax^2-4A=3\Rightarrow Ax^2=-4A-3\Rightarrow x^2=\dfrac{-4A-3}{A}\)
Do \(x^2\ge0\) \(\forall x\) \(\Rightarrow\dfrac{-4A-3}{A}\ge0\Rightarrow\dfrac{-3}{4}\le A< 0\)
\(\Rightarrow A_{min}=-\dfrac{3}{4}\) khi x=0
Hoặc có thể làm thế này: \(A=\dfrac{-3}{x^2+4}\Rightarrow\) A nhỏ nhất khi \(x^2+4\) nhỏ nhất
Mà \(x^2+4\ge4\Rightarrow A_{min}=\dfrac{-3}{4}\) khi \(x^2+4=4\Leftrightarrow x=0\)
\(B=\dfrac{1}{x^2+2x+4}=\dfrac{1}{\left(x+1\right)^2+3}\)
B lớn nhất khi \(\left(x+1\right)^2+3\) nhỏ nhất, mà \(\left(x+1\right)^2+3\ge3\) \(\forall x\)
\(\Rightarrow B_{max}=\dfrac{1}{3}\) khi \(\left(x+1\right)^2+3=3\Leftrightarrow x=-1\)
\(A=\frac{3x^2+14}{x^2+4}=\frac{3x^2+12+2}{x^2+4}=3+\frac{2}{x^2+4}\)
Để Amax => \(\frac{2}{x^2+4}max\)
\(\Rightarrow\left(x^2+4\right)min\)
Vậy A Max = 3+2=5