Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e/
\(y=5sinx+6cosx-7\)
\(=\sqrt{61}\left(\frac{5}{\sqrt{61}}sinx+\frac{6}{\sqrt{61}}cosx\right)-7\)
\(=\sqrt{61}\left(sinx.cosa+cosx.sina\right)-7\) (với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{5}{\sqrt{61}}\))
\(=\sqrt{61}.sin\left(x+a\right)-7\)
Do \(-1\le sin\left(x+a\right)\le1\Rightarrow7-\sqrt{61}\le y\le7+\sqrt{61}\)
\(y_{min}=7-\sqrt{61}\) khi \(sin\left(x+a\right)=-1\)
\(y_{max}=7+\sqrt{61}\) khi \(sin\left(x+a\right)=1\)
f/
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+3\)
\(=2sin\left(x+\frac{\pi}{3}\right)+3\)
\(\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(x+\frac{\pi}{3}=1\)
c/
\(y=2\left(1-cos2x\right)+sin2x+cos2x\)
\(=sin2x-cos2x+2=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)+2\)
Do \(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\)
\(\Rightarrow2-\sqrt{2}\le y\le2+\sqrt{2}\)
\(y_{min}=2-\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(y_{max}=2+\sqrt{2}\) khi \(sin\left(2x+\frac{\pi}{4}\right)=1\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(=1-3sin^2x.cos^2x\)
\(=1-\frac{3}{4}sin^22x\)
Mà \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)
\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)
\(y_{max}=1\) khi \(sin2x=0\)
23.
\(tan^2x\ge0\Rightarrow y\le2\)
\(y_{max}=2\) khi \(tanx=0\)
\(y_{min}\) không tồn tại
24.
\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)
\(\Rightarrow y\ge\frac{1}{2}\)
\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)
\(y_{max}\) ko tồn tại
19.
\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)
\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)
\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)
\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)
21.
\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)
\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin^2x=0\)
\(y_{max}=3\) khi \(sin^2x=1\)
a/
\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)
\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)
\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
e/
\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)
\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow sinx=\pi+k2\pi\)
Mà \(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)
\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn
Pt đã cho vô nghiệm
f/
\(cos^2x-sin^2x+sin4x=0\)
\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)
\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
Đáp án A
Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}2+cosx>0\\2-cosx>0\end{matrix}\right.\)
\(\Rightarrow\frac{2+cosx}{2-cosx}>0\) \(\forall x\in R\)
e/
\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)
\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)
\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)
\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)
\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
a.
\(-1\le sinx\le1\Rightarrow-7\le y\le-3\)
\(y_{min}=-7\) khi \(sinx=-1\)
\(y_{max}=-3\) khi \(sinx=1\)
b.
\(-1\le cos\left(x+\frac{\pi}{3}\right)\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(cos\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(cos\left(x+\frac{\pi}{3}\right)=1\)
c.
\(0\le1-cosx\le2\Rightarrow-5\le y\le3\sqrt{2}-5\)
\(y_{min}=-5\) khi \(cosx=1\)
\(y_{max}=3\sqrt{2}-5\) khi \(cosx=-1\)
d.
ĐKXĐ: \(0\le sinx\Rightarrow0\le sinx\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(sinx=0\)
\(y_{max}=3\) khi \(sinx=1\)
Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?
Vì mình lấy giá trị nguyên bạn
Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)
\(\Rightarrow-0,25< k< 321,243\) (1)
Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)
d.
\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)
\(y_{min}=2\) khi \(sin2x=-1\)
\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)
e.
\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)
\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)
\(y_{max}=2\) khi \(sinx=0\)
a.
\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)
\(y_{min}=2\) khi \(cosx=0\)
\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)
b.
\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)
\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)
c.
\(0\le cos^23x\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(cos^23x=1\)
\(y_{max}=3\) khi \(cos3x=0\)