Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\left|3x+6\right|+\left(2x-4y\right)^2+6>=6\)
Dấu '=' xảy ra khi x=-2 và 2x=4y
=>x=-2 và 4y=-4
=>x=-2 và y=-1
b: \(B=\left|2x-5\right|+\left|7-2x\right|>=\left|2x-5+7-2x\right|=2\)
Dấu '=' xảy ra khi (2x-5)(2x-7)<=0
=>5/2<=x<=7/2
a) A = | x - 3 | + 1
| x - 3 |≥0
Nên | x - 3 |+1≥1
Dấu = xảy ra khi x-3=0 hay x=3
Vậy GTNN của A=1 khi x=3
b ) B = | 6 - 2x | - 5
| 6 - 2x |≥0
Nên |6-2x|-5≥-5
Dấu = xảy ra khi 6-2x=0 hay x=3
Vậy GTNN của B=-5 khi x=3
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
Vì ( x + 1 ) 2≥0
Nên -( x + 1 ) 2≤0
Vì |2y - y |≥0
Nên - |2y - y |≤0
C = - ( x + 1 ) 2 - |2y - y | + 11 ≤11
Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0
Vậy GTLN của C=11 khi x=-1 và y=0
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
Vì ( x + 5 )2 ≥0
(2y - 6 )2 ≥0
D = ( x + 5 )2 + (2y - 6 )2 + 1≥1
Do đó dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3
Vậy GTNN của D=1 khi x=-5;y=3
a, \(A=\left|2x-5\right|+\left|2x-12\right|=\left|2x-5\right|+\left|12-2x\right|\ge\left|2x-5+12-2x\right|=7\)
Dấu "=" xảy ra khi \(\left(2x-5\right)\left(12-2x\right)\ge0\Leftrightarrow\frac{5}{2}\le x\le6\)
Vậy Amin=7 khi 5/2 <= x <= 6
b, \(B=\left|3x+6\right|+\left|3x-8\right|=\left|3x+6\right|+\left|8-3x\right|\ge\left|3x+6+8-3x\right|=14\)
Dấu "=" xảy ra khi \(\left(3x+6\right)\left(8-3x\right)\ge0\Leftrightarrow-2\le x\le\frac{8}{3}\)
Vậy...
c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|=2+2=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)
Vậy...
Bài 1:
Ta thấy:\(2x^2\ge0\Rightarrow-2x^2\le0\)
\(\Rightarrow-2x^2-1\le-1\Rightarrow C\le-1\)
Dấu "=" khi \(-2x^2=0\Leftrightarrow x=0\)
Vậy \(Max_C=-1\) khi x=0
Ta thấy: \(3\sqrt{x-5}\ge0\)
\(\Rightarrow-3\sqrt{x-5}\le0\)
\(\Rightarrow-3\sqrt{x-5}+2\le2\)
\(\Rightarrow D\le2\)
Dấu "=" khi \(-3\sqrt{x-5}=0\Leftrightarrow\sqrt{x-5}=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy \(Max_D=2\) khi \(x=5\)
Bài 2:
Ta thấy: \(3x^2\ge0\Rightarrow3x^2-5\ge-5\)
\(\Rightarrow A\ge-5\)
Dấu "=" khi \(3x^2=0\Leftrightarrow x=0\)
Vậy \(Min_A=-5\) khi x=0
Ta thấy: \(2\left(x-3\right)^2\ge0\)
\(\Rightarrow B\ge0\)
Dấu "=" khi \(2\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(Min_B=0\) khi x=3
a, ta có: \(\left|2x-6\right|\ge0,\forall x\)
\(\Rightarrow A\le8.\)Dấu "='' xảy ra khi\(\left|2x-6\right|=0\Rightarrow x=3\)
Vậy \(MaxA=8\Leftrightarrow x=3\)
b,Ta có \(B\le0\)Dấu ''='' xảy ra khi \(\left|\frac{5}{3}-x\right|=0\Leftrightarrow x=\frac{5}{3}\)
Vậy..........
c,\(C=-\left(2x+4\right)^{2016}+3\)
Ta có \(-\left(2x+4\right)^{2016}\le0,\forall x\)
\(\Rightarrow C\le3\)Dấu ''='' xảy ra khi \(2x+4=0\Rightarrow x=-2\)
Vậy...........................
dcmmmm
dit con me may vl