Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
Ta có : \(C=\dfrac{5-x^2}{x^2+3}\)
\(=\dfrac{-\left(x^2+3\right)+8}{x^2+3}=\dfrac{8}{x^2+3}-1\)
Ta sẽ có : \(x^2\ge0\Rightarrow x^2+3\ge3\Rightarrow\dfrac{8}{x^2+3}\le\dfrac{8}{3}\)
\(\Rightarrow C=\dfrac{8}{x^2+3}-1\le\dfrac{8}{3}-1=\dfrac{5}{3}\)
Vậy : \(MaxC=\dfrac{5}{3}\Leftrightarrow x=0.\)
Để C lớn nhất thì x² + 3 nhỏ nhất
Ta có:
x² ≥ 0 với mọi x R
⇒ x² + 3 ≥ 3 với mọi x R
⇒ x² + 3 nhỏ nhất là 3 khi x = 0
⇒ max C = (5 - 0²)/(0² + 3) = 5/3
thu02ngan10 đề phải là tìm GTNN nhé
Đặt \(A=x^2+5\)
Vì \(x^2\ge0\forall x\)nên \(A\ge0+5=5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy \(A_{min}=5\Leftrightarrow x=0\)
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
\(A=|x+5|+2-x\)
\(\hept{\begin{cases}x+5=0\\2-x=0\end{cases}}=>x=\hept{\begin{cases}x=-5\\x=2\end{cases}}\)
Gía trị nhỏ nhất của A là
\(|-5+5|=2-2\)
\(|0|=0\)
=>=0
GTLN của A ngược lại ( chắc thế )
\(B\ge-17\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-2\\y=-x-5=2-5=-3\end{matrix}\right.\)
để biểu thức trên đạt GTLN thì | x-2| phải bé nhất
ta có : |x| \(\ge\)0
vậy |x-2| = 0 xãy ra khi x = 2
=>x=2
=>GTLN của biểu thức trên là 7
nếu sai thì thông cảm nhé
Sorry bạn nha.Mình không biết làm
Cậu vào câu hỏi tương tự đó