K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P=-|2x-5|-(y-5)^2-5<=-5

Dấu = xảy ra khi x=5/2 và y=5

1 tháng 12 2016

1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)

Dấu "=" khi \(-2012\le x\le5\)

Vậy MinA=2007 khi \(-2012\le x\le5\)

2)Ta thấy:\(\left|2x-3\right|\ge0\)

\(\Rightarrow-\left|2x-3\right|\le0\)

\(\Rightarrow-5-\left|2x-3\right|\le-5\)

Dấu "=" khi \(x=\frac{3}{2}\)

Vậy MaxN=-5 khi \(x=\frac{3}{2}\)

17 tháng 2 2019

A, \(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\)

\(\left(x+2\right)^2\ge0,\left(\frac{y}{5}\right)^2\ge0\)

\(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\ge-10\)

Vậy C đạt GTNN là -10 khi \(\left(x+2\right)^2=0và\left(\frac{y}{5}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)

B, Vì \(4>0\)\(\left(2x-3\right)^2+5>0\)

Nên \(D=\frac{4}{\left(2x-3\right)^2+5}\)có GTLN khi (2x-3)2+5 đạt GTNN

\(\left(2x-3\right)^2+5\ge5\)

\(\Rightarrow\left(2x-3\right)^2+5\)có GTNN là 5 khi 2x-3=0 => x=3/2

Thay vào D ta có: \(D=\frac{4}{5}\)

Vâỵ \(D_{max}=\frac{4}{5}\)khi\(x=\frac{3}{2}\)

15 tháng 5 2016

a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)

=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi x=-2;y=1/5

Vậy GTNN của C là -10 tại x=-2;y=1/5

15 tháng 5 2016

b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)

Dấu "=" xảy ra khi: x=3/2

Vậy GTLN của D là : 4/5 tại x=3/2

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

2 tháng 11 2016

2/ \(M=1-\left(x+3\right)^2\)

\(\left(x+3\right)^2\ge0\)

\(\Rightarrow1-\left(x+3\right)^2\ge1\)

Vậy \(max_A=1\) khi x=-3

tíc mình nha