K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

em ko biết em chỉ tim thui 

có ai làm cho cisuuuuuuuuuuuuuuuuu ko

5 tháng 9 2021

\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)

\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1

\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)

\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)

\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4

C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)

\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2

\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2 

d: Ta có: \(D=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

31 tháng 7 2016

B=-3x2-5y2+2x+7y-23

\(=-3x^2-5y^2+2x-7y-\frac{1}{3}-\frac{49}{20}-\frac{1213}{60}\)

\(=-3x^2+2x-\frac{1}{3}-5y^2+7y-\frac{49}{20}-\frac{1213}{60}\)

\(=-3\left(x^2-2\cdot\frac{1}{3}\cdot x+\frac{1}{3}^2\right)-5\left(y^2-2\cdot\frac{7}{10}\cdot y+y^2\right)-\frac{1213}{60}\)

\(=-3\left(x-\frac{1}{3}\right)^2-5\left(y-\frac{7}{10}\right)^2-\frac{1213}{60}\le0-\frac{1213}{60}\)

\(\Rightarrow B\le-\frac{1213}{60}\)

Dấu = khi x=1/3; y=7/10

Vậy .....

10 tháng 6 2018

B = \(-x^2+4x+5=-\left(x^2-4x-5\right)=-\left[\left(x^2-4x+4\right)-9\right]=-\left(x-2\right)^2+9\)

Có: \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2+9\le9\)

Vậy MaxB = 9 <=> x = 2

-----

C = \(x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

Dấu ''='' xảy ra khi x = 2

Vậy MinC = 5 <=> x = 2

--------

D = \(9+30x^2+25x^2=9+55x^2\ge9\)

dấu ''='' xảy ra khi x = 0

vậy minC = 9 <=> x = 0

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

2 tháng 9 2021

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)

27 tháng 10 2021

a) \(=3\left(x^2-10x+25\right)=3\left(x-5\right)^2\)

b) \(=x\left(x+y\right)+8\left(x+y\right)=\left(x+y\right)\left(x+8\right)\)

c) \(=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)

27 tháng 10 2021

a) =3(x2−10x+25)=3(x−5)2

b) =x(x+y)+8(x+y)=(x+y)(x+8)

c) =(x+2)2−y2=(x+2−y)(x+2+y)