\(A=-x^2+4x+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

\(A=-x^2+4x+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)

                                                                             \(=-\left(x-2\right)^2+7\)

                                                                             \(=7-\left(x-2\right)^2\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=7-\left(x-2\right)^2\le7\)

Dấu "=" xảy ra <=> x - 2 = 0 => x = 2

Vậy Amax = 7 <=> x = 2

18 tháng 6 2018

\(A=-x^2+4x-4+7=-\left(x-2\right)^2+7\ge7\)

dấu "=" xảy ra khi x=2

14 tháng 6 2019

\(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)

\(\Rightarrow x-10=0\)

\(\Rightarrow x=10\)

14 tháng 6 2019

#)Giải :

\(A=x^2-20x+101\)

\(A=x^2+2.10.x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = -10

=> Vậy GTNN của A = 1 đạt được khi x = -10

30 tháng 9 2020

Ta có: \(4x-x^2+3\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7\le7\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Max = 7 khi x = 2

30 tháng 9 2020

4x - x2 + 3

= -( x2 - 4x + 4 ) + 7

= -( x - 2 )2 + 7 ≤ 7 ∀ x

Dấu = xảy ra <=> x = 2

Vậy GTLN của đa thức = 7 <=> x = 2

20 tháng 9 2016

a) \(A=\left(x^2-10x+25\right)\)\(-28\)

   \(A=\left(x-5\right)^2-28\)\(>=\)-28

MinA = -28 <=> x-5=0 <=> x=5

b)\(B=-\left(x^2+2x+1\right)+6\)

   \(B=-\left(x+1\right)^2+6\)\(< =\)6

MaxB = 6 <=> x+1=0 <=> x=-1

c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)

   \(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)

MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)

d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)

\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)

MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)

Đúng thì nhớ tích cho minh nha

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

13 tháng 10 2016

a)\(A=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu = khi \(x=2\)

Vậy MaxA=7 khi \(x=2\)

b)\(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = khi \(x=\frac{1}{2}\)

Vậy MaxB=\(\frac{1}{4}\)khi \(x=\frac{1}{2}\)

 

 

 

 

13 tháng 10 2016

\(A=4x-x^2+3=7-x^2+4x-4=7-\left(x-2\right)^2\le7\)

\(MaxA=7\Leftrightarrow x=2\)

\(B=x-x^2=\frac{5}{4}-x^2+x-\frac{1}{4}=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\)

\(MaxB=\frac{5}{4}\Leftrightarrow x=\frac{1}{2}\)

\(N=2x-2x^2-5=-\frac{9}{2}-2x^2+2x-\frac{1}{2}=-\frac{9}{2}-2\left(x-\frac{1}{4}\right)^2\le-\frac{9}{2}\)

\(MaxN=-\frac{9}{2}\Leftrightarrow x=\frac{1}{4}\)

31 tháng 7 2019

\(a,A=4x-x^2+3\)

       \(=-\left(x^2-4x+4\right)+7\)

       \(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\) 

Vậy......

\(b,B=4-x^2+2x\)

      \(=-\left(x^2-2x+1\right)+5\)

      \(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy......

31 tháng 7 2019

B2:

a) ta có: \(a^2+b^2-2ab\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)

\(\Rightarrowđpcm\)

b) Ta có: \(a^2+b^2\ge-2ab\)

     \(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)

   \(\Rightarrowđpcm\)