K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)

\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)

\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)

\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)

\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)

-Đặt \(a=\dfrac{1}{x+2}\) thì:

\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)

\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)

\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)

27 tháng 2 2022

-Kết hợp phương pháp nhóm hạng tử với đặt ẩn phụ luôn. 

13 tháng 9 2021

\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)

Dấu \("="\Leftrightarrow x=-5\)

 

 

 

18 tháng 9 2021

cảm ơn nha:3

 

13 tháng 7 2019

\(A=-x^2-4x-2\)

\(\Leftrightarrow-A=x^2+4x+2\)

\(\Leftrightarrow-A=x^2+4x+4-2\)

\(\Leftrightarrow-A=\left(x+2\right)^2-2\)

Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-2\ge-2\)hay \(-A\ge-2\)

\(\Rightarrow A\le2\)

Vậy GTLN của A là 2\(\Leftrightarrow x=-2\)

26 tháng 11 2019

 1a) 8xy(8-12x+6x*x-x*x*x)

 chú thích   x*x là x bình phương

                 x*x*x là x lập phương

2. a) 3x (x-5)- (x-1)(2+3x)=30

      3x*x-15x-2x-3x*x+2+3x=30

           14x=28

           x=2 

  b) (x+2)(x-3)-(x-2)(x+5)=0

     x*x-3x+2x-6-x*x-5x+2x+10=0

       2x=-4

       x=-2

  còn mấy  bài còn lại mình không biết

     

a) (x-1)*(x+2)-(x-3)*(-x+4)=19

\(\Leftrightarrow x^2+2x-x-2-\left(-x^2+4x+3-12\right)=19\)

\(\Leftrightarrow x^2+2x-x-2+x^2-4x-3+12=19\)

\(\Leftrightarrow2x^2-3x+7-19=0\)

\(\Leftrightarrow2x^2-3x-12=0\)

Đề sai??

b) (2x -1)*(3x+5)-(6x-1)*(6x+1)=(-17)

\(\Leftrightarrow6x^2+10x-3x-5-\left(36x^2+6x-6x-1\right)=-17\)

\(\Leftrightarrow6x^2+10x-3x-5-36x^2-6x+6x+1=-17\)

\(\Leftrightarrow-30x^2+7x-4+17=0\)

\(\Leftrightarrow-30x^2+7x+13=0\)

???

3 tháng 7 2018

2/

a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

Dấu "=" xảy ra khi x=-3/2

Vậy Amin=-19/2 khi x=-3/2

b,bài này phải tìm min 

 \(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi x = 2

Vậy Bmin=4 khi x=2

31 tháng 10 2018

Bài 2)Ta có:

\(2x^2+6x-5\)

\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)

\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

24 tháng 10 2021

\(f\left(x\right)⋮g\left(x\right)\)

\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)

\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)