Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)
Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy A max là 7 chỉ khi x=-2
b) \(7-x^2-y^2-2\left(x+y\right)\)
\(=7-x^2-y^2-2x-2y\)
\(=-x^2-2x-1-y^2-2y-1+9\)
\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)
Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)
Vậy ...................
1/ \(M=x^2-2x.15+225-198\)
\(M=\left(x-15\right)^2-198\ge-198\)
\(Min\)\(M=-198\Leftrightarrow x=15\)
1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật
2.ĐK: \(x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)
Vậy GTNN của Q là 1 khi x = 1
1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)
Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy GTLN của B là 7 khi x = 2
a) \(A=x^2-2x+5\)
\(A=x^2-2x+1+4\)
\(A=\left(x-1\right)^2+4\)
Có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Dấu '=' xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
Vậy: \(Min_A=4\) tại \(x=1\)
b) \(B=x^2+x+1\)
\(B=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu '=' xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_B=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
c) \(C=4x-x^2+3\)
\(C=-x^2+4x-4+8\)
\(C=8-\left(x^2-4x+4\right)\)
\(C=8-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\Rightarrow8-\left(x-2\right)^2\le8\)
Dấu '=' xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_C=8\) tại \(x=2\)
\(M=4x-x^2+3\)
\(=-x^2+4x+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\)
Vì; \(-\left(x-2\right)^2+7\le7\forall x\)
=> Max M =7 tại \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Ta có: \(N=x-x^2=-x^2+x\)
\(=-x^2+x-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
=> Max N =1/4 tại \(-\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
=.= hok tốt!!
a)\(M=4x-x^2+3\)
\(M=-x^2+4x+3\)
\(M=-x^2+4x-4+7\)
\(M=-\left(x-2\right)^2+7\le7.Với\forall x\in Q\)
Dấu "=" xảy ra khi x = 2
Vậy Max M = 7 <=> x = 2
b)\(N=x-x^2=-x^2+x\le x\)
Dấu "=" xảy ra khi x = 0
=> Max N = 0 <=> x = 0