K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

\(P=3-4x-x^2=-\left(x^2+4x+4\right)+7\)

\(P=-\left(x+2\right)^2+7\)

\(Do-\left(x+2\right)^2\le0\Leftrightarrow P\le7\)

Dấu "=" xảy ra khi  x + 2 =0

    => x = -2 

Vậy Max P = 7 khi x = - 2

11 tháng 9 2018

giúp mình câu 2 điii

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

a)

\(Q=2x-2-3x^2\\ Q=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{3.\left(-3\right)\left(-2\right)-2^2}{4.\left(-3\right)}\\ Q=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{12}\le-\dfrac{14}{12}\)

đẳng thức xảy ra khi x=1/3

vậy MAX Q=-14/12 tại x=1/3

c)

\(S=-x^2+4x-9\\ S=-\left(x^2-4x+4\right)-5\\ S=-\left(x-2\right)^2-5\le-5\)

đẳng thức xảy ra khi x=2

vậy MAX S=-5 tại x=2

9 tháng 9 2019

a) P = 3 - 4x - x2

= -x2 - 4x + 3

= -(x2 + 4x + 4 - 4) + 3

= -(x + 2)2 + 7

Ta có: -(x + 2)2 ≤ 0 với ∀x

Nên: -(x + 2)2 + 7 ≤ 7 với ∀x

Dấu "=" xảy ra ⇔ -(x + 2)2 = 0

x + 2 = 0

x = -2

Vậy GTLN của biểu thức P là 7 khi x = -2

d) S = -x2 + 4x - 9

= -(x2 - 4x + 4 - 4) - 9

-(x - 2)2 - 5

Ta có: -(x - 2)2 ≤ 0 với ∀x

Nên: -(x - 2)2 - 5 ≤ -5 với ∀x

Dấu "=" xảy ra ⇔ -(x - 2)2 = 0

x - 2 = 0

x = 2

Vậy GTLN của biểu thức S là -5 khi x = 2

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

7 tháng 9 2019

c) 8x3 - 12x^2 + 6x - 1 = 0

⇔ ( 2x - 1 )\(^3\) = 0

⇔ 2x - 1 = 0

⇔ x = \(\frac{1}{2}\)

e) x^3 + 5x^2 + 9x = -45

⇔ x\(^3\) + 5x\(^2\) + 9x + 45 =0

⇔ x\(^2\) ( x + 5 ) + 9( x + 5 ) = 0

⇔ ( x\(^2\) + 9 ) ( x + 5 ) = 0

⇔( x + 3 ) ( x - 3 ) ( x + 5 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-5\end{matrix}\right.\)

g) x^2 + 16 = 10x

⇔ x\(^2\) - 10x + 16 = 0

⇔ x\(^2\) - 8x - 2x + 16 = 0

⇔ x( x - 8 ) - 2 ( x - 8 ) = 0

⇔ ( x - 2 ) ( x - 8 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=8\end{matrix}\right.\)

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1