Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{27}=\dfrac{-2}{3,6}\)
=> x. 3,6 = 27. (-2)
=> x.3,6 = -54
x = (-54) : 3,6
x = -15
b) -0,52 : x = -9,36 : 16,38
- 0,52 : x = \(\dfrac{-4}{7}\)
x = \(\dfrac{-4}{7}\) . ( -0,52)
x = \(\dfrac{52}{175}\)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
Tìm x:
a) \(\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=-\dfrac{7}{4}+\dfrac{1}{4}:\dfrac{1}{8}\)
\(\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{1}{4}\)
\(-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-3\dfrac{3}{5}\right)\)
\(-1\dfrac{1}{5}+x=\dfrac{-9}{10}\)
\(\Rightarrow x=\dfrac{3}{10}\)
b) \(\dfrac{5}{7}+\dfrac{2}{3}x=\dfrac{3}{10}\)
\(\dfrac{2}{3}x=\dfrac{3}{10}-\dfrac{5}{7}\)
\(\dfrac{2}{3}x=\dfrac{-29}{70}\)
\(\Rightarrow x=\dfrac{-87}{140}\)
c) \(\dfrac{-22}{15}x+\dfrac{1}{3}=\left|\dfrac{-2}{3}+\dfrac{1}{5}\right|\)
\(-\dfrac{22}{15}x+\dfrac{1}{3}=\dfrac{7}{15}\)
\(\dfrac{-22}{15}x=\dfrac{4}{15}-\dfrac{1}{3}\)
\(\dfrac{-22}{15}x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-1}{11}\)
a) \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
⇔ \(\left(\dfrac{-8}{5}+x\right).\dfrac{13}{12}=\dfrac{13}{6}\)
⇔ \(-\dfrac{8}{5}+x=\dfrac{13}{6}:\dfrac{13}{12}\)
⇔ \(-\dfrac{8}{5}+x=2\)
⇔ \(x=2+\dfrac{8}{5}\)
⇔ \(x=\dfrac{18}{5}\)
b) \(\dfrac{-4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
⇔ \(-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
⇔ \(-\dfrac{4}{7}x=-\dfrac{3}{40}-\dfrac{7}{5}\)
⇔ \(-\dfrac{4}{7}x=-\dfrac{59}{40}\)
⇔ \(x=\left(-\dfrac{59}{40}\right):\left(-\dfrac{4}{7}\right)\)
⇔ \(x=\dfrac{413}{160}\)
a, \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
=> \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=\dfrac{13}{6}\)
=> \(\left(-1\dfrac{3}{5}+x\right)=\dfrac{13}{6}.\dfrac{12}{13}\)
=> \(\left(-1\dfrac{3}{5}+x\right)=2\)
=> \(\dfrac{-8}{5}+x=2\)
=> x= \(2+\dfrac{8}{5}=\dfrac{10}{5}+\dfrac{8}{5}\)
=> x= \(\dfrac{18}{5}\)
\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)
=>Trong 2 số phải có 1 số âm và 1 số dương
Mà \(2-x>\dfrac{4}{5}-x\)
=>\(\dfrac{4}{5}< x< 2\)
Vậy...
Đặt P(x)=0
\(\Leftrightarrow x\left(x^4+7x^3-9x^2-2x-\dfrac{1}{4}\right)=0\)
=>x=0
Đặt Q(x)=0
\(\Leftrightarrow-5x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}=0\)
hay \(x\in\varnothing\)
\(x\in Z\Rightarrow2x-17\ne0;Goi:d=\left(x-8,2x-17\right)\Rightarrow\left\{{}\begin{matrix}x-8⋮d\\2x-17⋮d\end{matrix}\right.\Leftrightarrow2\left(x-8\right)-\left(2x-17\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrow\frac{x-8}{2x-17}toigian\forall x\)
\(ĐK:x\ne-1;Goi:d=\left(x-4,x+1\right)\Rightarrow\left\{{}\begin{matrix}x-4⋮d\\x+1⋮d\end{matrix}\right.\Rightarrow x+1-\left(x-4\right)⋮d\Leftrightarrow5⋮d\Rightarrow d\in\left\{1;5\right\}\) gia sư: \(x+1⋮5\Rightarrow x\ne5k+1\left(k\in N\right)\)
a: x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
A=1/7-x-x-3/5+4/5=-2x+12/35
b: B=|x-1/7|+|x+3/5|-1/3
x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
B=1/7-x+3/5+x-1/3=43/105
\(A=\left|x+\dfrac{1}{5}\right|-x+\dfrac{4}{7}\)
Để A lớn nhất thì giá trị của x phải lớn nhất
\(\Leftrightarrow\)x là 1 số nguyên dương
Khi đó,
\(A=\left|x+\dfrac{1}{5}\right|-x+\dfrac{4}{7}=x+\dfrac{1}{5}-x+\dfrac{4}{7}\)
\(=\dfrac{1}{5}+\dfrac{4}{7}=\dfrac{27}{35}\)
Vậy \(A_{max}\)=\(\dfrac{27}{35}\)
Thanks bạn nhìu! :3