K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(A=x-x^2\)

\(-A=x^2-x\)

\(-A=x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}-\frac{1}{4}\)

\(-A=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(\Rightarrow-A\ge-\frac{1}{4}\)

\(\Rightarrow A\le\frac{1}{4}\)

dấu "=" xảy ra khi : 

\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

24 tháng 7 2016

\(x^2-12x+33\)

\(=\left(x^2-2.6x+6^2\right)-3\)

\(=\left(x-6\right)^2-3\)

Ta có :

\(\left(x-6\right)^2\ge0\)

\(\Rightarrow\left(x-6\right)^2-3\ge-3\)

\(\Rightarrow GTNN\)của \(\left(x-6\right)^2-3=-3\Leftrightarrow x-6=0\Leftrightarrow x=6\)

\(x^2-12x+33\)

\(=x^2-2.x.6+6^2-6^2+33\)

\(=\left(x-6\right)^2-6^2+33\)

\(=\left(x-6\right)^2-3\)

Vì \(\left(x-6\right)^2\ge0\) với mọi x

nên \(\left(x-6\right)^2-3\ge-3\)

=> GTNN của f(x) là -3 khi \(\left(x-6\right)^2=0\) => x = 6

18 tháng 6 2017

Thay x = 11 => x + 1 = 12 

Ta có : x4 - 12x3 + 12x2 - 12x + 111 

= x- (x + 1).x3 + (x + 1).x2 - (x + 1).x + 111

= x4 - x4 + x3 - x3 + x2 - x2 + x + 111

= 111 - x 

= 111 - 11

= 100

Mà 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

18 tháng 9 2018

\(A=x\cdot\left(2-x\right)\left[x^2+\left(2-x\right)^2\right]\)

\(=-2\left(x-1\right)^4+2\le2\)

18 tháng 9 2018

\(A=xy.\left(x^2+y^2\right)=xy.\left[\left(x+y\right)^2-2xy\right]=4xy-2\left(xy\right)^2\)

Đặt\(xy=a\)

\(A=4a-2a^2=2-\left(2a^2-4a+2\right)=2-2.\left(a^2-2a+1\right)=2-2.\left(a-1\right)^2\le2\)

Dấu ''='' xảy ra khi \(a-1=0\Rightarrow a=1\)

Hay \(xy=1\)

\(\Rightarrow x=\frac{1}{y}\)

Thay vào x+y=2 ta được

\(\frac{1}{y}+y=2\)

\(1+y^2-2y=0\)

\(y=1\)\(x=1\)

Vậy max A=2 khi x=y=1