Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
Đề hình như phải là câu a tìm Max b tìm Min và c Tìm max nhé
a,
Ta có:
\(\sqrt{2x+3}\ge0\Rightarrow13-\sqrt{2x+3}\le13\)
MaxA=13 <=> 2x+3=0 => x=-3/2
Vậy...
b,
Ta có:
\(5\sqrt{x^2+25}\ge0\Rightarrow83+5\sqrt{x^2+25}\ge83\)
Min B= 83 <=> x^2+25=0 => x^2=-25
=> Vô nghiệm
c,
Ta có:
\(\sqrt{x^2-36}\ge0\Rightarrow57-\sqrt{x^2-36}\le57\)
Min C= 57 <=> x^2-36=0
=> x^2=36
=>....
\(\sqrt{x^2-25}\ge0\)
\(\Rightarrow3-\sqrt{x^2-25}\le3\)
Vậy GTLN của B là 3 khi \(\sqrt{x^2-25}=0\Rightarrow x^2-25=0\Rightarrow x^2=25\Rightarrow x=+-5\)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
Bài giải
a, \(B=12-\left(x+5\right)^2\) đạt GTLN khi \(\left(x+5\right)^2\) đạt GTNN
Mà \(\left(x+5\right)^2\ge0\) Dấu " = " xảy ra khi \(\left(x+5\right)^2=0\text{ }\Rightarrow\text{ }x+5=0\text{ }\Rightarrow\text{ }x=-5\)
\(\Rightarrow\text{ }Max\text{ }B=12\text{ khi và chỉ khi }x=-5\)
b, \(C=\sqrt{2}-x^2\)đạt GTLN khi \(x^2\) đạt GTNN
Mà \(x^2\ge0\) Dấu " = " xảy ra khi \(x^2=0\text{ }\Rightarrow\text{ }x=0\text{ }\)
\(\Rightarrow\text{ }Max\text{ }C=\sqrt{2}\text{ khi và chỉ khi }x=0\)
c, \(D\) đạt GTLN khi \(-\left[x+\sqrt{5}\right]\) đạt GTLN
Mà \(-\left[x+\sqrt{5}\right]\le0\) Dấu " = " xảy ra khi \(-\left[x+\sqrt{5}\right]=0\)\(\Rightarrow\) \(x+\sqrt{5}=0\) \(\Rightarrow\) \(x=-\sqrt{5}\)
\(\Rightarrow\text{ }Max\text{ }D=2\text{ khi và chỉ khi }x=-\sqrt{5}\)
Vì \(\sqrt{x^2-25}\ge0\) \(\forall x\)
\(\Rightarrow B=3-\sqrt{x^2-25}\le3\) \(\forall x\) có GTLN là 3
Dấu "=" xảy ra <=> \(\sqrt{x^2-25}=0\Leftrightarrow x^2=25\Rightarrow x=\left\{-5;5\right\}\)
Vậy \(B_{max}=3\) tại \(x=\left\{-5;5\right\}\)