\(-x^2+4x+5\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Bài 1:

\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:

\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:

\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy GTNN của A là \(\dfrac{11}{4}\)

Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)

Với mọi giá trị của x ta có:

\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)

Vậy \(Min_B=5\)

Để B = 5 thì \(x^2=0\Rightarrow x=0\)

Bài 3:

\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)

Để A = 5 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)

Với mọi giá trị của x ta có :

\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)

Vậy \(Max_B=4\)

Để B = 4 thì \(2-x=0\Rightarrow x=2\)

12 tháng 7 2017

Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức

\(2x^2+2x+1\)

Ta có: \(2x^2>2x\forall x\)\(2x^2\ge0\)

\(\Rightarrow2x^2-2x\ge0\)

Vậy \(2x^2+2x+1\ge1\) (đpcm)

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

29 tháng 6 2018

a) A = x2 + 5x +4

⇒ A = x2 + 4x +4 +x

⇒ A = (x + 2)2 + x ≥ x

Dấu "=" xảy ra khi ⇔ (x + 2)2 = 0 ⇔ x + 2 = 0 ⇔ x = -2

Vậy Amin = x khi x = -2

17 tháng 9 2019

ghi đề hẳn hoi coi